498 research outputs found

    Deploying a Communicating Automatic Weather Station on an Alpine Glacier

    Get PDF
    The cost and effort of installing and maintaining an automatic weather station (AWS) on a glacier may be mitigated by the possibility of gathering sensor data in near real-time, and of controlling and programming the station remotely. In this paper we report our experience with upgrading an existing AWS, operating over an Italian glacier, from a mere datalogger into a networked sensing station. Design choices, energy constraints and power-aware programming of the station determined by harsh environment are discussed. Deployment operations and results are described. The upgraded AWS provides low-power connectivity from a remote location and is able to serve as a base station for a wireless sensor network working in the glacier

    Novel Scintillating Materials Based on Phenyl-Polysiloxane for Neutron Detection and Monitoring

    Full text link
    Neutron detectors are extensively used at many nuclear research facilities across Europe. Their application range covers many topics in basic and applied nuclear research: in nuclear structure and reaction dynamics (reaction reconstruction and decay studies); in nuclear astrophysics (neutron emission probabilities); in nuclear technology (nuclear data measurements and in-core/off-core monitors); in nuclear medicine (radiation monitors, dosimeters); in materials science (neutron imaging techniques); in homeland security applications (fissile materials investigation and cargo inspection). Liquid scintillators, widely used at present, have however some drawbacks given by toxicity, flammability, volatility and sensitivity to oxygen that limit their duration and quality. Even plastic scintillators are not satisfactory because they have low radiation hardness and low thermal stability. Moreover organic solvents may affect their optical properties due to crazing. In order to overcome these problems, phenyl-polysiloxane based scintillators have been recently developed at Legnaro National Laboratory. This new solution showed very good chemical and thermal stability and high radiation hardness. The results on the different samples performance will be presented, paying special attention to a characterization comparison between synthesized phenyl containing polysiloxane resins where a Pt catalyst has been used and a scintillating material obtained by condensation reaction, where tin based compounds are used as catalysts. Different structural arrangements as a result of different substituents on the main chain have been investigated by High Resolution X-Ray Diffraction, while the effect of improved optical transmittance on the scintillation yield has been elucidated by a combination of excitation/fluorescence measurements and scintillation yield under exposure to alpha and {\gamma}-rays.Comment: InterM 2013 - International Multidisciplinary Microscopy Congres

    Probing the chemical environment of 3-hydroxyflavone doped ormosils by a spectroscopic study of excited state intramolecular proton transfer

    Get PDF
    Abstract The spectroscopic properties of 3-hydroxyflavone (3-HF) molecules entrapped in films and in monoliths of sol–gel derived organically modified silicates (Ormosils) xerogels are studied by excitation and fluorescence spectroscopy as a function of the sol–gel precursors used for the synthesis. Different molar ratios of tetraethoxysilane (TEOS), methyltriethoxysilane (MTES) and phenyltriethoxysilane (PTES) as precursors are used for the sol preparation. Emission and excitation spectra in the ultraviolet–visible range and photo-degradation curves as a function of time are collected with a spectrofluorimeter. The 3-hydroxyflavone optical properties change in the different networks, owing to the effects of the chemical environment on the excited state intramolecular proton transfer and to the solubility of the dye molecules in the different sol–gel systems. It turns out that the spectroscopic features can be used to probe the chemical state of the dye molecules microenvironment

    Increased sensitivity of DMD lymphoblastoid cell to low doses of X-irradiation.

    Get PDF
    Several cell membrane abnormalities affecting various cell populations have been reported in Duchenne muscular dystrophy (DMD) by different investigators. In peripheral blood lymphocytes intrinsic cellular membrane defect evidentiated by impairment of capping capacities has been repeatedly obtained, suggesting that DMD product could act in such cellular phenotype at the cytoskeletal compartment. It has been previously reported that lymphoid cells are characterized by high radiosensitivity. On the assumption that DMD phenotypes could increase this susceptibility, we have compared the radiosensitivity of normal and DMD lymphoblastoid cell lines (LCLs) to small doses (0-2Gy) of x-irradiation. The results obtained suggest an increased sensitivity of DMD cells without Ca++ uptake or apoptotic phenomena, associated with an effect upon cell cycle length

    High-Resolution monitoring of current rapid transformations on glacial and periglacial environments

    Get PDF
    Glacial and periglacial environments are highly sensitive to climatic changes. Processes of cryosphere degradation may strongly impact human activities and infrastructures, and need to be monitored for improved understanding and for mitigation/adaptation. Studying glacial and periglacial environments using traditional techniques may be difficult or not feasible, but new remote sensing techniques like terrestrial and aerial laser scanner opened new possibilities for cryospheric studies. This work presents an application of the terrestrial laser scanner (TLS) for monitoring the current rapid changes occurring on the Montasio Occidentale glacier (Eastern Italian alps), which is representative of low-altitude, avalanche-fed and debris-cover glaciers. These glaciers are quite common in the Alps but their reaction to climate changes is still poorly known. The mass balance, surface velocity fields, debris cover dynamics and effects of meteorological extremes were investigated by repeat high-resolution TLS scanning from September 2010 to October 2012. The results were encouraging and shed light on the peculiar response of this glacier to climatic changes, on its current dynamics and on the feedback played by the debris cover, which is critical for its preservation. The rapid transformations in act, combined with the unstable ice mass, large amount of loose debris and channeled runoff during intense rainfalls, constitute a potential area for the formation of large debris flows, as shown by field evidences and documented by the recent literature

    Removal of ammonium from wastewater with geopolymer sorbents fabricated via additive manufacturing

    Get PDF
    Geopolymers have been recently explored as sorbents for wastewater treatment, thanks to their mechanical and chemical stability and to their low-energy manufacturing process. One specific application could be the removal of ammonium (NH4+) through exchange with Na+ ions. Additive manufacturing (AM) represents an especially interesting option for fabrication, as it allows to tailor the size, distribution, shape, and interconnectivity of pores, and therefore the access to charge-bearing sites. The present study provides a proof of concept for NH4+ removal from wastewater using porous geopolymer components fabricated via direct ink writing (DIW) AM approach. A metakaolin-based ink was employed for the fabrication of a log-pile structure with 45\ub0 rotation between layers, producing continuous yet tortuous macropores which are responsible for the high permeability of the sorbents. The ink consolidates in an amorphous, mesoporous network, with the mesopores acting as preferential sites for ion exchange. The printed sorbents were characterized for their physicochemical and mechanical properties and the NH4+ removal capacity in continuous-flow column experiments by using a model effluent. The lattices present high permeability and high cation exchange capacity and maintained a high amount of active ions after four cycles, allowing to reuse them multiple times
    • …
    corecore