36,769 research outputs found
Staticity Theorem for Higher Dimensional Generalized Einstein-Maxwell System
We derive formulas for variations of mass, angular momentum and canonical
energy in Einstein (n-2)-gauge form field theory by means of the ADM formalism.
Considering the initial data for the manifold with an interior boundary which
has the topology of (n-2)-sphere we obtained the generalized first law of black
hole thermodynamics. Supposing that a black hole evevt horizon comprisesw a
bifurcation Killing horizon with a bifurcate surface we find that the solution
is static in the exterior world, when the Killing timelike vector field is
normal to the horizon and has vanishing electric or magnetic fields on static
slices.Comment: 10 pages, REVTEX, to published in Phys.Rev. D1
Thermodynamics and Stability of Higher Dimensional Rotating (Kerr) AdS Black Holes
We study the thermodynamic and gravitational stability of Kerr anti-de Sitter
black holes in five and higher dimensions. We show, in the case of equal
rotation parameters, , that the Kerr-AdS background metrics become
stable, both thermodynamically and gravitationally, when the rotation
parameters take values comparable to the AdS curvature radius. In turn, a
Kerr-AdS black hole can be in thermal equilibrium with the thermal radiation
around it only when the rotation parameters become not significantly smaller
than the AdS curvature radius. We also find with equal rotation parameters that
a Kerr-AdS black hole is thermodynamically favored against the existence of a
thermal AdS space, while the opposite behavior is observed in the case of a
single non-zero rotation parameter. The five dimensional case is however
different and also special in that there is no high temperature thermal AdS
phase regardless of the choice of rotation parameters. We also verify that at
fixed entropy, the temperature of a rotating black hole is always bounded above
by that of a non-rotating black hole, in four and five dimensions, but not in
six and more dimensions (especially, when the entropy approaches zero or the
minimum of entropy does not correspond to the minimum of temperature). In this
last context, the six dimensional case is marginal.Comment: 15 pages, 23 eps figures, RevTex
On higher dimensional black holes with abelian isometry group
We consider (n+1)--dimensional, stationary, asymptotically flat, or
Kaluza-Klein asymptotically flat black holes, with an abelian --dimensional
subgroup of the isometry group satisfying an orthogonal integrability
condition. Under suitable regularity conditions we prove that the area of the
group orbits is positive on the domain of outer communications, vanishing only
on its boundary and on the "symmetry axis". We further show that the orbits of
the connected component of the isometry group are timelike throughout the
domain of outer communications. Those results provide a starting point for the
classification of such black holes. Finally, we show non-existence of zeros of
static Killing vectors on degenerate Killing horizons, as needed for the
generalisation of the static no-hair theorem to higher dimensions
Poly-essential and general Hyperelastic World (brane) models
This article provides a unified treatment of an extensive category of
non-linear classical field models whereby the universe is represented (perhaps
as a brane in a higher dimensional background) in terms of a structure of a
mathematically convenient type describable as hyperelastic, for which a
complete set of equations of motion is provided just by the energy-momentum
conservation law. Particular cases include those of a perfect fluid in
quintessential backgrounds of various kinds, as well as models of the elastic
solid kind that has been proposed to account for cosmic acceleration. It is
shown how an appropriately generalised Hadamard operator can be used to
construct a symplectic structure that controles the evolution of small
perturbations, and that provides a characteristic equation governing the
propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds.
The special case of a poly-essential model - the k-essential analogue of an
ordinary polytropic fluid - is examined and shown to be well behaved (like the
fluid) only if the pressure to density ratio is positive.Comment: 16 pages Latex, Contrib. to 10th Peyresq Pysics Meeting, June 2005:
Micro and Macro Structures of Spacetim
Linearized self-forces for branes
We compute the regularized force density and renormalized action due to
fields of external origin coupled to a brane of arbitrary dimension in a
spacetime of any dimension. Specifically, we consider forces generated by
gravitational, dilatonic and generalized antisymmetric form-fields. The force
density is regularized using a recently developed gradient operator. For the
case of a Nambu--Goto brane, we show that the regularization leads to a
renormalization of the tension, which is seen to be the same in both
approaches. We discuss the specific couplings which lead to cancellation of the
self-force in this case.Comment: 15 page
Spinning BTZ Black Hole versus Kerr Black Hole : A Closer Look
By applying Newman's algorithm, the AdS_3 rotating black hole solution is
``derived'' from the nonrotating black hole solution of Banados, Teitelboim,
and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given
in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution
originally given by BTZ is given in a kind of an ``unfamiliar'' coordinates
which are related to each other by a transformation of time coordinate alone.
The relative physical meaning between these two time coordinates is carefully
studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating
BTZ solution are newly found via Newman's algorithm, next, the transformation
to Kerr-Schild-type coordinates is looked for. Indeed, such transformation is
found to exist. And in this Kerr-Schild-type coordinates, truely maximal
extension of its global structure by analytically continuing to ``antigravity
universe'' region is carried out.Comment: 17 pages, 1 figure, Revtex, Accepted for publication in Phys. Rev.
Cosmic Vortons and Particle Physics Constraints
We investigate the cosmological consequences of particle physics theories
that admit stable loops of superconducting cosmic string - {\it vortons}.
General symmetry breaking schemes are considered, in which strings are formed
at one energy scale and subsequently become superconducting in a secondary
phase transition at what may be a considerably lower energy scale. We estimate
the abundances of the ensuing vortons, and thereby derive constraints on the
relevant particle physics models from cosmological observations. These
constraints significantly restrict the category of admissible Grand Unified
theories, but are quite compatible with recently proposed effects whereby
superconducting strings may have been formed close to the electroweak phase
transition.Comment: 33 pages, 2 figures, RevTe
Interaction of a two-dimensional strip boundary layer with a three-dimensional transonic swept-wing code
A 3D inviscid transonic analysis code was combined with a 2D strip integral boundary layer technique to form an approximate interaction procedure for analyzing the flow over a high aspect ratio wing near cruise conditions. Converged results obtained using the procedure for an aspect ratio 10.3 supercritical wing are discussed. Angle of attack adjustments were made during the iterative procedure in order to compensate for the viscous lift loss. A comparison of the calculations with experimental data is presented
Generalized Smarr relation for Kerr AdS black holes from improved surface integrals
By using suitably improved surface integrals, we give a unified geometric
derivation of the generalized Smarr relation for higher dimensional Kerr black
holes which is valid both in flat and in anti-de Sitter backgrounds. The
improvement of the surface integrals, which allows one to use them
simultaneously at infinity and on the horizon, consists in integrating them
along a path in solution space. Path independence of the improved charges is
discussed and explicitly proved for the higher dimensional Kerr AdS black
holes. It is also shown that the charges for these black holes can be correctly
computed from the standard Hamiltonian or Lagrangian surface integrals.Comment: 21 pages Latex file, 1 figure; discussion on integrability rectified,
typo in (2.14) correcte
A Systematic Investigation of Light Heavy-Ion Reactions
We introduce a novel coupling potential for the scattering of deformed light
heavy-ion reactions. This new approach is based on replacing the usual
first-derivative coupling potential by a new, second derivative coupling
potential in the coupled-channels formalism. The new approach has been
successfully applied to the study of the C+C, C+Mg,
O+Si and O+Mg systems and made major improvements
over all the previous coupled-channels calculations for these systems. This
paper also shows the limitations of the standard coupled-channels theory and
presents a global solution to the problems faced in the previous theoretical
accounts of these reactions.Comment: 7 pages with 4 figure
- …