23,038 research outputs found
Static deformation of silica and silicates
Static ductile deformational processes in deformed quartz, olivine, pyroxenes, and plagioclas
ALESEP: A computer program for the analysis of airfoil leading edge separation bubbles
The ALESEP program for the analysis of the inviscid/viscous interaction which occurs due to the presence of a closed laminar transitional separation bubble on an airflow is presented. The ALESEP code provides a iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis. Part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function and a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation. Instructions for the input/output, and program usage are presented
A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars
General relativistic superfluid neutron stars have a significantly more
intricate dynamics than their ordinary fluid counterparts. Superfluidity allows
different superfluid (and superconducting) species of particles to have
independent fluid flows, a consequence of which is that the fluid equations of
motion contain as many fluid element velocities as superfluid species. Whenever
the particles of one superfluid interact with those of another, the momentum of
each superfluid will be a linear combination of both superfluid velocities.
This leads to the so-called entrainment effect whereby the motion of one
superfluid will induce a momentum in the other superfluid. We have constructed
a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativistic mean field model
for the nucleons and their interactions. In this context there are two notions
of ``relativistic'': relativistic motion of the individual nucleons with
respect to a local region of the star (i.e. a fluid element containing, say, an
Avogadro's number of particles), and the motion of fluid elements with respect
to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the
supranuclear densities in the core of a neutron star can make the nucleons
themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly-rotating superfluid neutron star
configurations, a distinguishing characteristic being that the neutrons can
rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR
Recommended from our members
Next-generation sequencing of prostate cancer: genomic and pathway alterations, potential actionability patterns, and relative rate of use of clinical-grade testing.
Despite being one of the most common cancers, treatment options for prostate cancer are limited. Novel approaches for advanced disease are needed. We evaluated the relative rate of use of clinical-grade next generation sequencing (NGS) in prostate cancer, as well as genomic alterations identified and their potential actionability. Of 4864 patients from multiple institutions for whom NGS was ordered by physicians, only 67 (1.4%) had prostate cancer, representing 1/10 the ordering rate for lung cancer. Prostate cancers harbored 148 unique alterations affecting 63 distinct genes. No two patients had an identical molecular portfolio. The median number of characterized genomic alterations per patient was 3 (range, 1 to 9). Fifty-six of 67 patients (84%) had ≥ 1 potentially actionable alteration. TMPRSS2 fusions affected 28.4% of patients. Genomic aberrations were most frequently detected in TP53 (55.2% of patients), PTEN (29.9%), MYC (17.9%), PIK3CA (13.4%), APC (9.0%), BRCA2 (9.0%), CCND1 (9.0%), and RB1 genes (9.0%). The PI3K (52.2% of patients), WNT (13.5%), DNA repair (17.9%), cell cycle (19.4%), and MAPK (14.9%) machinery were commonly impacted. A minority of patients harbored BRAF, NTRK, ERBB2, or mismatch repair gene abnormalities, which are highly druggable in some cancers. Only ~ 10% of prostate cancer trials (clinicaltrials.gov, year 2017) applied a (non-hormone) biomarker before intervention. In conclusion, though use of clinical-grade NGS is relatively low and only a minority of trials deploy DNA-based biomarkers, many prostate cancer-associated molecular alterations may be pharmacologically tractable with genomcially targeted therapy or, in the case of mismatch repair anomalies, with checkpoint inhibitor immunotherapy
Shock propagation and stability in causal dissipative hydrodynamics
We studied the shock propagation and its stability with the causal
dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence
of the usual viscosity is not enough to stabilize the solution. This problem is
solved by introducing an additional viscosity which is related to the
coarse-graining scale of the theory.Comment: 14 pages, 16 figure
The dynamics of dissipative multi-fluid neutron star cores
We present a Newtonian multi-fluid formalism for superfluid neutron star
cores, focussing on the additional dissipative terms that arise when one takes
into account the individual dynamical degrees of freedom associated with the
coupled "fluids". The problem is of direct astrophysical interest as the nature
of the dissipative terms can have significant impact on the damping of the
various oscillation modes of the star and the associated gravitational-wave
signatures. A particularly interesting application concerns the
gravitational-wave driven instability of f- and r-modes. We apply the developed
formalism to two specific three-fluid systems: (i) a hyperon core in which both
Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks
in the colour-flavour-locked phase in which a population of neutral K^0 kaons
is present. The formalism is, however, general and can be applied to other
problems in neutron-star dynamics (such as the effect of thermal excitations
close to the superfluid transition temperature) as well as laboratory
multi-fluid systems.Comment: RevTex, no figure
Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation
The Bogoliubov procedure in quantum field theory is used to describe a
relativistic almost ideal Bose gas at zero temperature. Special attention is
given to the study of a vortex. The radius of the vortex in the field
description is compared to that obtained in the relativistic fluid
approximation. The Kelvin waves are studied and, for long wavelengths, the
dispersion relation is obtained by an asymptotic matching method and compared
with the non relativistic result.Comment: 20 page
Bulk viscosity of superfluid neutron stars
The hydrodynamics, describing dynamical effects in superfluid neutron stars,
essentially differs from the standard one-fluid hydrodynamics. In particular,
we have four bulk viscosity coefficients in the theory instead of one. In this
paper we calculate these coefficients, for the first time, assuming they are
due to non-equilibrium beta-processes (such as modified or direct Urca
process). The results of our analysis are used to estimate characteristic
damping times of sound waves in superfluid neutron stars. It is demonstrated
that all four bulk viscosity coefficients lead to comparable dissipation of
sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is
published in Phys. Rev.
- …