1,625 research outputs found
COMMUNITY BASED RESOURCE PLANNING - Studies from Zimbabwe and Northern Australia
Community/Rural/Urban Development,
Poly-essential and general Hyperelastic World (brane) models
This article provides a unified treatment of an extensive category of
non-linear classical field models whereby the universe is represented (perhaps
as a brane in a higher dimensional background) in terms of a structure of a
mathematically convenient type describable as hyperelastic, for which a
complete set of equations of motion is provided just by the energy-momentum
conservation law. Particular cases include those of a perfect fluid in
quintessential backgrounds of various kinds, as well as models of the elastic
solid kind that has been proposed to account for cosmic acceleration. It is
shown how an appropriately generalised Hadamard operator can be used to
construct a symplectic structure that controles the evolution of small
perturbations, and that provides a characteristic equation governing the
propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds.
The special case of a poly-essential model - the k-essential analogue of an
ordinary polytropic fluid - is examined and shown to be well behaved (like the
fluid) only if the pressure to density ratio is positive.Comment: 16 pages Latex, Contrib. to 10th Peyresq Pysics Meeting, June 2005:
Micro and Macro Structures of Spacetim
Computation using Noise-based Logic: Efficient String Verification over a Slow Communication Channel
Utilizing the hyperspace of noise-based logic, we show two string
verification methods with low communication complexity. One of them is based on
continuum noise-based logic. The other one utilizes noise-based logic with
random telegraph signals where a mathematical analysis of the error probability
is also given. The last operation can also be interpreted as computing
universal hash functions with noise-based logic and using them for string
comparison. To find out with 10^-25 error probability that two strings with
arbitrary length are different (this value is similar to the error probability
of an idealistic gate in today's computer) Alice and Bob need to compare only
83 bits of the noise-based hyperspace.Comment: Accepted for publication in European Journal of Physics B (November
10, 2010
The rotational modes of relativistic stars: Numerical results
We study the inertial modes of slowly rotating, fully relativistic compact
stars. The equations that govern perturbations of both barotropic and
non-barotropic models are discussed, but we present numerical results only for
the barotropic case. For barotropic stars all inertial modes are a hybrid
mixture of axial and polar perturbations. We use a spectral method to solve for
such modes of various polytropic models. Our main attention is on modes that
can be driven unstable by the emission of gravitational waves. Hence, we
calculate the gravitational-wave growth timescale for these unstable modes and
compare the results to previous estimates obtained in Newtonian gravity (i.e.
using post-Newtonian radiation formulas). We find that the inertial modes are
slightly stabilized by relativistic effects, but that previous conclusions
concerning eg. the unstable r-modes remain essentially unaltered when the
problem is studied in full general relativity.Comment: RevTeX, 29 pages, 31 eps figure
Quicksort, Largest Bucket, and Min-Wise Hashing with Limited Independence
Randomized algorithms and data structures are often analyzed under the
assumption of access to a perfect source of randomness. The most fundamental
metric used to measure how "random" a hash function or a random number
generator is, is its independence: a sequence of random variables is said to be
-independent if every variable is uniform and every size subset is
independent. In this paper we consider three classic algorithms under limited
independence. We provide new bounds for randomized quicksort, min-wise hashing
and largest bucket size under limited independence. Our results can be
summarized as follows.
-Randomized quicksort. When pivot elements are computed using a
-independent hash function, Karloff and Raghavan, J.ACM'93 showed expected worst-case running time for a special version of quicksort.
We improve upon this, showing that the same running time is achieved with only
-independence.
-Min-wise hashing. For a set , consider the probability of a particular
element being mapped to the smallest hash value. It is known that
-independence implies the optimal probability . Broder et al.,
STOC'98 showed that -independence implies it is . We show
a matching lower bound as well as new tight bounds for - and -independent
hash functions.
-Largest bucket. We consider the case where balls are distributed to
buckets using a -independent hash function and analyze the largest bucket
size. Alon et. al, STOC'97 showed that there exists a -independent hash
function implying a bucket of size . We generalize the
bound, providing a -independent family of functions that imply size .Comment: Submitted to ICALP 201
Slowly Rotating General Relativistic Superfluid Neutron Stars with Relativistic Entrainment
Neutron stars that are cold enough should have two or more
superfluids/supercondutors in their inner crusts and cores. The implication of
superfluidity/superconductivity for equilibrium and dynamical neutron star
states is that each individual particle species that forms a condensate must
have its own, independent number density current and equation of motion that
determines that current. An important consequence of the quasiparticle nature
of each condensate is the so-called entrainment effect, i.e. the momentum of a
condensate is a linear combination of its own current and those of the other
condensates. We present here the first fully relativistic modelling of slowly
rotating superfluid neutron stars with entrainment that is accurate to the
second-order in the rotation rates. The stars consist of superfluid neutrons,
superconducting protons, and a highly degenerate, relativistic gas of
electrons. We use a relativistic - mean field model for the
equation of state of the matter and the entrainment. We determine the effect of
a relative rotation between the neutrons and protons on a star's total mass,
shape, and Kepler, mass-shedding limit.Comment: 30 pages, 10 figures, uses ReVTeX
Relativistic Two-stream Instability
We study the (local) propagation of plane waves in a relativistic,
non-dissipative, two-fluid system, allowing for a relative velocity in the
"background" configuration. The main aim is to analyze relativistic two-stream
instability. This instability requires a relative flow -- either across an
interface or when two or more fluids interpenetrate -- and can be triggered,
for example, when one-dimensional plane-waves appear to be left-moving with
respect to one fluid, but right-moving with respect to another. The dispersion
relation of the two-fluid system is studied for different two-fluid equations
of state: (i) the "free" (where there is no direct coupling between the fluid
densities), (ii) coupled, and (iii) entrained (where the fluid momenta are
linear combinations of the velocities) cases are considered in a
frame-independent fashion (eg. no restriction to the rest-frame of either
fluid). As a by-product of our analysis we determine the necessary conditions
for a two-fluid system to be causal and absolutely stable and establish a new
constraint on the entrainment.Comment: 15 pages, 2 eps-figure
Jacobi-like bar mode instability of relativistic rotating bodies
We perform some numerical study of the secular triaxial instability of
rigidly rotating homogeneous fluid bodies in general relativity. In the
Newtonian limit, this instability arises at the bifurcation point between the
Maclaurin and Jacobi sequences. It can be driven in astrophysical systems by
viscous dissipation. We locate the onset of instability along several constant
baryon mass sequences of uniformly rotating axisymmetric bodies for compaction
parameter . We find that general relativity weakens the Jacobi
like bar mode instability, but the stabilizing effect is not very strong.
According to our analysis the critical value of the ratio of the kinetic energy
to the absolute value of the gravitational potential energy for compaction parameter as high as 0.275 is only 30% higher than the
Newtonian value. The critical value of the eccentricity depends very weakly on
the degree of relativity and for is only 2% larger than the
Newtonian value at the onset for the secular bar mode instability. We compare
our numerical results with recent analytical investigations based on the
post-Newtonian expansion.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Edge states of graphene bilayer strip
The electronic structure of the zig-zag bilayer strip is analyzed. The
electronic spectra of the bilayer strip is computed. The dependence of the edge
state band flatness on the bilayer width is found. The density of states at the
Fermi level is analytically computed. It is shown that it has the singularity
which depends on the width of the bilayer strip. There is also asymmetry in the
density of states below and above the Fermi energy.Comment: 9 page
Variational description of multi-fluid hydrodynamics: Uncharged fluids
We present a formalism for Newtonian multi-fluid hydrodynamics derived from
an unconstrained variational principle. This approach provides a natural way of
obtaining the general equations of motion for a wide range of hydrodynamic
systems containing an arbitrary number of interacting fluids and superfluids.
In addition to spatial variations we use ``time shifts'' in the variational
principle, which allows us to describe dissipative processes with entropy
creation, such as chemical reactions, friction or the effects of external
non-conservative forces. The resulting framework incorporates the
generalization of the entrainment effect originally discussed in the case of
the mixture of two superfluids by Andreev and Bashkin. In addition to the
conservation of energy and momentum, we derive the generalized conservation
laws of vorticity and helicity, and the special case of Ertel's theorem for the
single perfect fluid.
We explicitly discuss the application of this framework to thermally
conducting fluids, superfluids, and superfluid neutron star matter. The
equations governing thermally conducting fluids are found to be more general
than the standard description, as the effect of entrainment usually seems to be
overlooked in this context. In the case of superfluid He4 we recover the
Landau--Khalatnikov equations of the two-fluid model via a translation to the
``orthodox'' framework of superfluidity, which is based on a rather awkward
choice of variables. Our two-fluid model for superfluid neutron star matter
allows for dissipation via mutual friction and also ``transfusion'' via
beta-reactions between the neutron fluid and the proton-electron fluid.Comment: uses RevTeX 4; 20 pages. To appear in PRD. v2: removed discussion of
charged fluids and coupling to electromagnetic fields, which are submitted as
a separate paper for a clearer presentation v3: fixed typo in Eq.(9), updated
some reference
- …