1,103 research outputs found

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    Implementation and Performance of Munin

    Get PDF
    Munin is a distributed shared memory (DSM) system that allows shared memory paral­lel programs to be executed efficiently on distributed memory multiprocessors. Munin is unique among existing DSM systems in its use of multiple consistency protocols and in its use of release consistency. In Munin, shared program variables are annotated with their expected access pattern, and these annotations are then used by the runtime system to choose a consistency protocol best suited to that access pattern. Release consistency allows Munin to mask network latency and reduce the number of messages required to keep memory consistent. Munin's multi­protocol release consistency is implemented in software using a delayed update queue that buffers and merges pending outgoing writes. A sixteen­processor prototype of Munin is currently operational. We evaluate its imple­ mentation and describe the execution of two Munin programs that achieve performance within ten percent of message passing implementations of the same programs. Munin achieves this level of performance with only minor annotations to the shared memory programs

    Techniques for Reducing Consistency-Related Communication in Distributed Shared Memory System

    Get PDF
    Distributed shared memory 8DSM) is an abstraction of shared memory on a distributed memory machine. Hardware DSM systems support this abstraction at the architecture level; software DSM systems support the abstraction within the runtime system. One of the key problems in building an efficient software DSM system is to reduce the amount of communication needed to keep the distributed memories consistent. In this paper we present four techniques for doing so: 1) software release consistency; 2) multiple consistency protocols; (3) write-shared protocols; and (4) an update-with-timeout mechanism. These techniques have been implemented in the Munin DSM system. We compare the performance of seven Munin application programs, first to their performance when implemented using message passing, and then to their performance when running on a conventional software DSM system that does not embody the above techniques. On a 16-processor cluster of workstations, Munin’s performance is within 5% of message passing for four out of the seven applications. For the other three, performance is within 29% to 33%. Detailed analysis of two of these three applications indicates that the addition of a function shipping capability would bring their performance to within 7% of the message passing performance. Compared to a conventional DSM system, Munin achieves performance improvements ranging from a few to several hundred percent, depending on the application

    Munin: Distributed Shared Memory Based on Type-Specific Memory Coherence

    Get PDF
    We are developing Munin y , a system that allows pro­ grams written for shared memory multiprocessors to be executed efficiently on distributed memory ma­chines. Thus, Munin overcomes the architectural lim­itations of shared memory machines, while maintain­ing their advantages in terms of ease of programming. A unique characteristic of Munin is the mechanism by which the shared memory programming model is translated to the distributed memory hardware. This translation is performed by runtime software, with the aid of semantic hints provided by the user. Each shared data object is supported by a memory coher­ence mechanism appropriate to the manner in which the object is accessed. This paper focuses on Munin's memory coherence mechanisms, and compares our approach to previous work in this area. This research was supported in part by the National Science Foundationunder Grants CCR­8716914 and DCA­8619893 and by a National Science Foundation Fellowship. y In Norse mythology, the ravens Munin (Memory) and Hugin (Thought) perched on Odin's shoulder, and each evening they flew across the world to bring Odin knowledge of man's memories and thoughts. Thus, the raven Munin can be considered to have been the first distributed shared memory mechanism

    An Eye-Opening Approach to Developing and Communicating Integrated Environmental Assessments

    Get PDF
    Communication among managers, the public, and scientists is the key to successful ecosystem management; however, the varied perspectives and interests of these groups can make such communication difficult. One way to achieve effective communication is to develop a common knowledge base by combining syntheses of key scientific results with information-rich visual elements. Within a management landscape, integrated environmental assessments provide a useful framework for evaluating resources and directing management efforts. The integrated assessment process involves (1) initial investigation, (2) development of a conceptual framework, (3) data navigation, (4) environmental report cards, and (5) science communication. Each step requires the synthesis and visualization of information on the status and trends connected with multiple natural resources. We provide a case study, using examples from selected National Park Service sites in the mid-Atlantic region of the United States. Visual elements (conceptual diagrams, maps, graphs, tables, and photographs) were used to facilitate comparative assessments and to provide a more visual, or eye-opening , approach to effective environmental decision making

    Slowly Rotating General Relativistic Superfluid Neutron Stars with Relativistic Entrainment

    Full text link
    Neutron stars that are cold enough should have two or more superfluids/supercondutors in their inner crusts and cores. The implication of superfluidity/superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect, i.e. the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modelling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ\sigma - ω\omega mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit.Comment: 30 pages, 10 figures, uses ReVTeX

    Effects of acceleration on the collision of particles in the rotating black hole spacetime

    Full text link
    We study the collision of two geodesic particles in the accelerating and rotating black hole spacetime and probe the effects of the acceleration of black hole on the center-of-mass energy of the colliding particles and on the high-velocity collision belts. We find that the dependence of the center-of-mass energy on the acceleration in the near event-horizon collision is different from that in the near acceleration-horizon case. Moreover, the presence of the acceleration changes the shape and position of the high-velocity collision belts. Our results show that the acceleration of black holes brings richer physics for the collision of particles.Comment: 7 pages, 2 figures, The corrected version accepted for publication in EPJ

    6D Dyonic String With Active Hyperscalars

    Get PDF
    We derive the necessary and sufficient conditions for the existence of a Killing spinor in N=(1,0) gauge supergravity in six dimensions coupled to a single tensor multiplet, vector multiplets and hypermultiplets. These are shown to imply most of the field equations and the remaining ones are determined. In this framework, we find a novel 1/8 supersymmetric dyonic string solution with nonvanishing hypermultiplet scalars. The activated scalars parametrize a 4 dimensional submanifold of a quaternionic hyperbolic ball. We employ an identity map between this submanifold and the internal space transverse to the string worldsheet. The internal space forms a 4 dimensional analog of the Gell-Mann-Zwiebach tear-drop which is noncompact with finite volume. While the electric charge carried by the dyonic string is arbitrary, the magnetic charge is fixed in Planckian units, and hence necessarily non-vanishing. The source term needed to balance a delta function type singularity at the origin is determined. The solution is also shown to have 1/4 supersymmetric AdS_3 x S^3 near horizon limit where the radii are proportional to the electric charge.Comment: 28 pages, latex, minor corrections mad

    Stealth Branes

    Get PDF
    We discuss the brane world model of Dvali, Gabadadze and Porrati in which branes evolve in an infinite bulk and the brane curvature term is added to the action. If Z_2 symmetry between the two sides of the brane is not imposed, we show that the model admits the existence of "stealth branes" which follow the standard 4D internal evolution and have no gravitational effect on the bulk space. Stealth branes can nucleate spontaneosly in a Minkowski bulk. This process is described by the standard 4D quantum cosmology formalism with tunneling boundary conditions for the brane world wave function. The notorious ambiguity in the choice of boundary conditions is fixed in this case due to the presence of the embedding spacetime. We also point to some problematic aspects of models admitting stealth brane solutions.Comment: 24 pages; Final version, to appear in Phys. Rev. D. The discussion of "embeddability obstruction" is removed (thanks to Takahiro Tanaka who convinced us that there is no such obstruction
    corecore