20 research outputs found

    Selectvie Modification of Membrane Pore and External Surfaces

    Get PDF
    Modification of membrane surfaces by grafting polymer brushes from the surface has been shown to impart unique surface properties. These polymer brushes can be used as ligands in membrane for adsorbers, they can be used to reduce membrane fouling as well as for the development of responsive membranes that can change their conformation in response to an external stimulus1,2. Here we focus on magnetically responsive membranes where magnetically responsive polymer chains are grown from the membrane surface. We have developed a range of microfiltration3, ultrafiltration and nanofiltration4,5 membranes by grafting magnetically responsive polymer brushes from the membrane surface. Here we focus on regenerated cellulose based ultrafiltration membranes. Atom transfer radical polymerization (ATRP) has been used to graft poly-hydroxyethyl methacrylate (polyHEMA) from the surface of the membrane. Superparamagnetic particles have been attached to the chain ends. In an oscillating magnetic field, movement of the magnetically responsive nanobrushes leads to suppression of concentration polarization resulting in higher permeate fluxes and better rejection. We have also grafted with poly(N-isopropylacrylamide) a thermo-responsive polymer that exhibits a lower critical solution temperature, using ATRP, from the surface of the membrane. By carefully choosing the frequency of the oscillating magnetic field, movement of the polymer chains can used to induce mixing. Using much higher frequencies, around 1,000 Hz, heating will lead to collapse of poly(N-isopropylacrylamide) layer as the temperature of the grafted polymer layer increase above the lower critical solution temperature of the grafted poly(N-isopropylacrylamide). Unlike nanofiltration and microfiltration membranes where the majority the polymer chains are grafted from the barrier layer or the inside pore surface respectively, in the case of ultrafiltration membranes significant grafting can occur from both the barrier layer and the internal pore surface. In addition given the smaller pore sizes compared to microfiltration membranes, pore plugging by the grafted polymer chains must be avoided We have developed a novel technique to selectively graft from the external barrier layer or the internal membrane pore surface. We show that the magnetically responsive polymer brushes can have a significant different effect on rejection and flux of model feed streams consisting of proteins such as bovine serum albumin, depending on their location on the membrane barrier layer or in the pores. Our work highlights the importance of being able to control not only the three dimensional structure of the grafted polymers but also their location; from the membrane barrier layer or from the inside pore surface References 1. D. Bhattacharyya, T. Schäfer, S. R. Wickramasinghe, S. Daunert, eds., Responsive Membranes and Materials, John Wiley & Sons, 2013, West Sussex, UK. 2. S. Darvishmanesh, , Qian, X., Wickramasinghe, S. R. (2015), ‘Responsive membranes for advanced separations’, Current Opinions in Chemical Engineering, 8, 98-104. 3. H. H. Himstedt, Q. Yang, X. Qian, S. R. Wickramasinghe, M. Ulbricht, M., Toward remote-controlled valve functions via magnetically responsive capillary pore membranes’, J Membr. Sc., 423 (2012) 257-266. 4. Q. Yang, Q., H. H. Himstedt, M. Ulbricht, X. Qian, X., S. R. Wickramasinghe, Designing magnetic field responsive nanofiltration membranes, J Membr. Sc., 430 (2013) 70-78. 5. X. Qian, Yang, Q., Vu, A. T., Wickramasinghe, S. R. (2016), ‘Localized Heat generation from Magnetically Responsive Membranes’, Industrial & Engineering Research, 55 (33), 9015–9027

    Focusing of timelike worldsheets in a theory of strings

    Get PDF
    An analysis of the generalised Raychaudhuri equations for string world sheets is shown to lead to the notion of focusing of timelike worldsheets in the classical Nambu-Goto theory of strings. The conditions under which such effects can occur are obtained . Explicit solutions as well as the Cauchy initial value problem are discussed. The results closely resemble their counterparts in the theory of point particles which were obtained in the context of the analysis of spacetime singularities in General Relativity many years ago.Comment: 14 pages, RevTex, no figures, extended, to appear in Phys Rev

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-& beta;(A & beta;) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A & beta;plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A & beta;plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A & beta;and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A & beta;and tau. Proteomic analysis of cerebrospinal fluid from individuals with autosomal dominant Alzheimer's disease reveals how this complex and chronic disease evolves over many decades

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid- (A ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A and tau

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Quantitative Mass Spectrometry Analysis of Cerebrospinal Fluid Protein Biomarkers in Alzheimer’s Disease

    No full text
    Abstract Alzheimer’s disease (AD) is the most common form of dementia, with cerebrospinal fluid (CSF) β-amyloid (Aβ), total Tau, and phosphorylated Tau (pTau) providing the most sensitive and specific biomarkers for diagnosis. However, these diagnostic biomarkers do not reflect the complex changes in AD brain beyond amyloid (A) and Tau (T) pathologies. Here, we report a selected reaction monitoring mass spectrometry (SRM-MS) method with isotopically labeled standards for relative protein quantification in CSF. Biomarker positive (AT+) and negative (AT−) CSF pools were used as quality controls (QCs) to assess assay precision. We detected 62 peptides (51 proteins) with an average coefficient of variation (CV) of ~13% across 30 QCs and 133 controls (cognitively normal, AT−), 127 asymptomatic (cognitively normal, AT+) and 130 symptomatic AD (cognitively impaired, AT+). Proteins that could distinguish AT+ from AT− individuals included SMOC1, GDA, 14-3-3 proteins, and those involved in glycolysis. Proteins that could distinguish cognitive impairment were mainly neuronal proteins (VGF, NPTX2, NPTXR, and SCG2). This demonstrates the utility of SRM-MS to quantify CSF protein biomarkers across stages of AD

    Shift from income breeding to capital breeding with latitude in the invasive Asian shore crab Hemigrapsus sanguineus

    No full text
    Abstract Organisms vary in the timing of energy acquisition and use for reproduction. Thus, breeding strategies exist on a continuum, from capital breeding to income breeding. Capital breeders acquire and store energy for breeding before the start of the reproductive season, while income breeders finance reproduction using energy acquired during the reproductive season. Latitude and its associated environmental drivers are expected to heavily influence breeding strategy, potentially leading to latitudinal variation in breeding strategies within a single species. We examined the breeding strategy of the Asian shore crab Hemigrapsus sanguineus at five sites spanning nearly 10° of latitude across its invaded United States range. We hypothesized that the primary breeding strategy of this species would shift from income breeding to capital breeding as latitude increases. We found that though this species’ breeding strategy is dominated by capital breeding throughout much of the range, income breeding increases in importance at lower latitudes. This latitudinal pattern is likely heavily influenced by the duration of the foraging and breeding seasons, which also vary with latitude. We also found that reproductive characteristics at the northern and southern edges of the invaded range were consistent with continued range expansion. We suggest that the reproductive flexibility of the Asian shore crab is a key facilitator of its continued invasion success. Our results highlight the influence of latitude on the breeding strategy of a species and emphasize the need for further research regarding the ecological importance and implications of flexibility in breeding strategies within species
    corecore