239 research outputs found

    Biological activities of essential oils from leaves of paramignya trimera (Oliv.) guillaum and limnocitrus littoralis (miq.) swingle

    Get PDF
    The present study aimed to determine the bioactivities of essential oils extracted from the leaves of Paramignya trimera and Limnocitrus littoralis, including cytotoxicity, antiviral, antibacterial, antimycotic, and antitrichomonas effects. Herein, it was indicated that P. trimera and L. littoralis oils showed no cytotoxicity on normal cells, namely MT-4, BHK-21, MDBK, and Vero-76. P. trimera oil (i) exhibited the strongest inhibition against Staphylococcus aureus with MIC and MLC values of 2% (v/v); (ii) showed MIC and MLC values of 8% (v/v) in Candida parapsilosis; and (iii) in the remaining strains, showed MIC and MLC values greater than or equal to 16% (v/v). On the other hand, L. littoralis oil (i) displayed the strongest inhibition against Candida tropicalis and Candida parapsilosis with 2% (v/v) of MIC and MLC; and (ii) in the remaining strains, possessed MIC and MLC greater than or equal to 16% (v/v). In addition, antitrichomonas activities of the oils were undertaken, showing IC50, IC90, MLC values, respectively, at 0.016%, 0.03%, and 0.06% (v/v) from P. trimera, and 0.03%, 0.06%, 0.12% (v/v) from L. littoralis, after 48 h of incubation. The oils were completely ineffective against ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (RSV, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses. This is the first report describing the cytotoxicity, antiviral, antibacterial, antimycotic, and antitrichomonas activities of the essential oils of P. trimera and L. littoralis

    Perturbation of serine enantiomers homeostasis in the striatum of MPTP-lesioned monkeys and mice reflects the extent of dopaminergic midbrain degeneration

    Get PDF
    Loss of dopaminergic midbrain neurons perturbs L-serine and D-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high -performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuro-active amino acids modulating glutamatergic neurotransmission, including L-glutamate, glycine, L-aspartate, D- aspartate, and their precursors L-glutamine, L-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine trans-porter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of D-serine and L-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of D-serine and L-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degener-ation of dopaminergic neurons

    From ligand to complexes: Part 2: Remarks on human immunodeficiency virus type 1 integrase inhibition by beta-diketo acid metal complexes

    Get PDF
    In a previous work we reported results about the coordination ability of the diketo acid pharmacophore, and discussed on the anti-HIV-1 IN activity of a series of synthesized ÎČ-diketo acid metal complexes. Herein, a further extension of this study is reported. In particular, a new set of complexes with different stoichiometry was synthesized, and a series of potentiometric measurements were conducted for two diketo acids as model ligands in the presence of other divalent metal ions in order to outline a speciation model. The first X-ray solved structure of a diketo acid metal complex is presented. Moreover, we tested the obtained complexes for anti-HIV 1 IN activity. Furthermore, detailed docking studies were conducted in order to investigate the mode of binding of the free ligands compared with their metal complexes on the active site

    Polymer nanofilms with enhanced microporosity by interfacial polymerization

    Get PDF
    Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability, and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity which are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultra-thin polyarylate nanofilms with thickness down to 20 nm were formed in-situ by interfacial polymerisation. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalised by molecular simulations, are achieved by utilising contorted monomers for the interfacial polymerisation. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in-situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from noncontorted planar monomers

    Moderate exercise improves cognitive function in healthy elderly people: Results of a randomized controlled trial

    Get PDF
    BACKGROUND: Physical activity in the elderly is recommended by international guidelines to protect against cognitive decline and functional impairment. OBJECTIVE: This Randomized Controlled Trial (RCT) was set up to verify whether medium-intensity physical activity in elderly people living in the community is effective in improving cognitive performance. DESIGN: RCT with parallel and balanced large groups. SETTING: Academic university hospital and Olympic gyms. SUBJECTS: People aged 65 years old and older of both genders living at home holding a medical certificate for suitability in non-competitive physical activity. METHODS: Participants were randomized to a 12-week, 3 sessions per week moderate physical activity program or to a control condition focused on cultural and recreational activities in groups of the same size and timing as the active intervention group. The active phase integrated a mixture of aerobic and anaerobic exercises, including drills of “life movements”, strength and balance. The primary outcome was: any change in Addenbrooke's Cognitive Examination Revised (ACE-R) and its subscales. RESULTS: At the end of the trial, 52 people completed the active intervention, and 53 people completed the control condition. People in the active intervention improved on the ACE-R (ANOVA: F(1;102)=4.32, p=0.040), and also showed better performances on the memory (F(1;102)=5.40 p=0.022) and visual-space skills subscales of the ACE-R (F(1;102)=4.09 p=0.046). CONCLUSION: A moderate-intensity exercise administered for a relatively short period of 12 weeks is capable of improving cognitive performance in a sample of elderly people who live independently in their homes. Clinical Trials Registration No: NCT0385811

    High-Utilisation Nanoplatinum Catalyst (Pt@cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity

    Get PDF
    Polymers of intrinsic microporosity (PIM or here PIM-EA-TB) offer a highly rigid host environment into which hexachloroplatinate(IV) anions are readily adsorbed and vacuum carbonised (at 500 °C) to form active embedded platinum nanoparticles. This process is characterised by electron and optical microscopy, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and electrochemical methods, which reveal that the PIM microporosity facilitates the assembly of nanoparticles of typically 1.0 to 2.5-nm diameter. It is demonstrated that the resulting carbonised “Pt@cPIM” from drop-cast films of ca. 550-nm average thickness, when prepared on tin-doped indium oxide (ITO), contain not only fully encapsulated but also fully active platinum nanoparticles in an electrically conducting hetero-carbon host. Alternatively, for thinner films (50–250 nm) prepared by spin coating, the particles become more exposed due to additional loss of the carbon host. In contrast to catalyst materials prepared by vacuum-thermolysed hexachloroplatinate(IV) precursor, the platinum nanoparticles within Pt@cPIM retain high surface area, electrochemical activity and high catalyst efficiency due to the molecular rigidity of the host. Data are presented for oxygen reduction, methanol oxidation and glucose oxidation, and in all cases, the high catalyst surface area is linked to excellent catalyst utilisation. Robust transparent platinum-coated electrodes are obtained with reactivity equivalent to bare platinum but with only 1 Όg Pt cm−2 (i.e. ~100% active Pt nanoparticle surface is maintained in the carbonised microporous host). [Figure not available: see fulltext.
    • 

    corecore