11 research outputs found
Sinapate ester metabolism in Brassica and Arabidopsis
The accumulation of sinapate esters (SE) in organ- and tissue-specific patterns is considered a hallmark of Brassicaceae plants. Seeds of Arabidopsis and Brassica napus contain sinapine (sinapoylcholine) as major phenolic compound whereas the UV-shielding sinapoylmalate accumulates in epidermal cells. The accumulation kinetics of SE is based on transcriptional regulation of the enzymes UDP glucose:sinapate glucosyltransferase (SGT), sinapoylglucose:choline sinapoyltransferase (SCT), sinapoylglucose:malate sinapoyltransferase (SMT) and sinapine esterase (SCE). Enzymatic SGT activity is mediated by UDP glucosyltransferases of the UGT84A clade. In B. napus, the enzyme UGT84A9 is limiting for SE biosynthesis during seed development. Arabidopsis employs, besides the SGT homolog UGT84A2, three other hydroxycinnamate UGTs (UGT84A1, -A3, -A4) without pronounced specificity. In the allotetraploid genome of B. napus, UGT84A9 is represented by four loci of which UGT84A9a and -b are involved in SE biosynthesis. The sinapoyltransferases SMT and SCT were derived from hydrolases of the serine carboxypeptidase type (SCPs). Arabidopsis SMT adopted the functional elements of SCPs - catalytic triad, oxyanion hole and hydrogen bond network for substrate recognition - to catalyze glucose ester-dependent acyltransfer reactions. Sinapine esterase evolved by recruitment of lipase-like ancestors. To decrease the amount of antinutritive SE compounds in seeds of B. napus, targeted metabolic engineering was proven as the most efficient strategy. Silencing of UGT84A9 suppresses the biosyntheses of sinapine and related SE. Seed-specific overexpression of sinapine esterase BnSCE3 prevents sinapine accumulation by synchronization of biosynthesis and degradation. Combination of biosynthesis suppression with induced degradation of accumulating SE bears the potential to generate low sinapine B. napus lines
Glycation of Plant Proteins under Environmental Stress — Methodological Approaches, Potential Mechanisms and Biological Role
Environmental stress is one of the major factors reducing crop productivity. Due to the oncoming climate changes, the effects of drought and high light on plants play an increasing role in modern agriculture. These changes are accompanied with a progressing contamination of soils with heavy metals. Independent of their nature, environmental alterations result in development of oxidative stress, i.e. increase of reactive oxygen species (ROS) contents, and metabolic adjustment, i.e. accumulation of soluble primary metabolites (amino acids and sugars). However, a simultaneous increase of ROS and sugar concentrations ultimately results in protein glycation, i.e. non-enzymatic interaction of reducing sugars or their degradation products (α-dicarbonyls) with proteins. The eventually resulting advanced glycation end-products (AGEs) are known to be toxic and pro-inflammatory in mammals. Recently, their presence was unambiguously demonstrated in vivo in stressed Arabidopsis thaliana plants. Currently, information on protein targets, modification sites therein, mediators and mechanisms of plant glycation are being intensively studied. In this chapter, we comprehensively review the methodological approaches for plant glycation research and discuss potential mechanisms of AGE formation under stress conditions. On the basis of these patterns and additional in vitro experiments, the pathways and mechanisms of plant glycation can be proposed
Identification and Localization of a Lipase-like Acyltransferase in Phenylpropanoid Metabolism of Tomato (Solanum lycopersicum)
We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad
Heterologous gene expression system for the production of hydrolyzable tannin intermediates in herbaceous model plants
Aluminum toxicity is the main factor limiting the elongation of plant roots in acidic soil. The tree species Eucalyptus camaldulensis is considerably more resistant to aluminum than herbaceous model plants and crops. Hydrolyzable tannins (HTs) accumulating in E. camaldulensis roots can bind and detoxify the aluminum taken up by the roots. However, in herbaceous model plants, HTs do not accumulate and the genes involved in the HT biosynthetic pathway are largely unknown. The aim of this study was to establish a method for reconstituting the HT biosynthetic pathway in the HT non-accumulating model plant Nicotiana benthamiana. Four E. camaldulensis enzymes were transiently expressed in N. benthamiana leaves via Agrobacterium tumefaciens-mediated transformation. These enzymes included dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDH2 and EcDQD/SDH3), which catalyze the synthesis of gallic acid, the first intermediate of the HT biosynthetic pathway that branches off from the shikimate pathway. The others were UDP-glycosyltransferases (UGT84A25 and UGT84A26), which catalyze the conversion of gallic acid to β-glucogallin, the second intermediate. The co-expression of the EcDQD/SDHs in transgenic N. benthamiana leaf regions promoted the synthesis of gallic acid. Moreover, the co-expression of the UGT84As in addition to the EcDQD/SDHs resulted in the biosynthesis of β-glucogallin, the universal metabolic precursor of HTs. Thus, we successfully reconstituted a portion of the HT biosynthetic pathway in HT non-accumulating N. benthamiana plants. This heterologous gene expression system will be useful for co-expressing candidate genes involved in downstream reactions in the HT biosynthetic pathway and for clarifying their in planta functions
Dehydroquinate dehydratase/shikimate dehydrogenases involved in gallate biosynthesis of the aluminum-tolerant tree species Eucalyptus camaldulensis
The tree species Eucalyptus camaldulensis shows exceptionally high tolerance against aluminum, a widespread toxic metal in acidic soils. In the roots of E. camaldulensis, aluminum is detoxified via the complexation with oenothein B, a hydrolyzable tannin. In our approach to elucidate the biosynthesis of oenothein B, we here report on the identification of E. camaldulensis enzymes that catalyze the formation of gallate, which is the phenolic constituent of hydrolyzable tannins. By systematical screening of E. camaldulensis dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDHs), we found two enzymes, EcDQD/SDH2 and 3, catalyzing the NADP+-dependent oxidation of 3-dehydroshikimate to produce gallate. Based on extensive in vitro assays using recombinant EcDQD/SDH2 and 3 enzymes, we present for the first time a detailed characterization of the enzymatic gallate formation activity, including the cofactor preferences, pH optima, and kinetic constants. Sequence analyses and structure modeling suggest the gallate formation activity of EcDQD/SDHs is based on the reorientation of 3-dehydroshikimate in the catalytic center, which facilitates the proton abstraction from the C5 position. Additionally, EcDQD/SDH2 and 3 maintain DQD and SDH activities, resulting in a 3-dehydroshikimate supply for gallate formation. In E. camaldulensis, EcDQD/SDH2 and 3 are co-expressed with UGT84A25a/b and UGT84A26a/b involved in hydrolyzable tannin biosynthesis. We further identified EcDQD/SDH1 as a “classical” bifunctional plant shikimate pathway enzyme and EcDQD/SDH4a/b as functional quinate dehydrogenases of the NAD+/NADH-dependent clade. Our data indicate that in E. camaldulensis the enzymes EcDQD/SDH2 and 3 provide the essential gallate for the biosynthesis of the aluminum-detoxifying metabolite oenothein B.Publikationsfonds ML
Overexpression of Sinapine Esterase BnSCE3 in Oilseed Rape Seeds Triggers Global Changes in Seed Metabolism1[W][OA]
Sinapine (O-sinapoylcholine) is the predominant phenolic compound in a complex group of sinapate esters in seeds of oilseed rape (Brassica napus). Sinapine has antinutritive activity and prevents the use of seed protein for food and feed. A strategy was developed to lower its content in seeds by expressing an enzyme that hydrolyzes sinapine in developing rape seeds. During early stages of seedling development, a sinapine esterase (BnSCE3) hydrolyzes sinapine, releasing choline and sinapate. A portion of choline enters the phospholipid metabolism, and sinapate is routed via 1-O-sinapoyl-β-glucose into sinapoylmalate. Transgenic oilseed rape lines were generated expressing BnSCE3 under the control of a seed-specific promoter. Two distinct single-copy transgene insertion lines were isolated and propagated to generate homozygous lines, which were subjected to comprehensive phenotyping. Sinapine levels of transgenic seeds were less than 5% of wild-type levels, whereas choline levels were increased. Weight, size, and water content of transgenic seeds were significantly higher than those of wild-type seeds. Seed quality parameters, such as fiber and glucosinolate levels, and agronomically important traits, such as oil and protein contents, differed only slightly, except that amounts of hemicellulose and cellulose were about 30% higher in transgenic compared with wild-type seeds. Electron microscopic examination revealed that a fraction of the transgenic seeds had morphological alterations, characterized by large cavities near the embryonic tissue. Transgenic seedlings were larger than wild-type seedlings, and young seedlings exhibited longer hypocotyls. Examination of metabolic profiles of transgenic seeds indicated that besides suppression of sinapine accumulation, there were other dramatic differences in primary and secondary metabolism. Mapping of these changes onto metabolic pathways revealed global effects of the transgenic BnSCE3 expression on seed metabolism