136 research outputs found

    Poke Weed Mitogen Requires Toll-Like Receptor Ligands for Proliferative Activity in Human and Murine B Lymphocytes

    Get PDF
    Poke weed mitogen (PWM), a lectin purified from Phytolacca americana is frequently used as a B cell-specific stimulus to trigger proliferation and immunoglobulin secretion. In the present study we investigated the mechanisms underlying the B cell stimulatory capacity of PWM. Strikingly, we observed that highly purified PWM preparations failed to induce B cell proliferation. By contrast, commercially available PWM preparations with B cell activity contained Toll-like receptor (TLR) ligands such as TLR2-active lipoproteins, lipopolysaccharide and DNA of bacterial origin. We show that these microbial substances contribute to the stimulatory activity of PWM. Additional experimental data highlight the capacity of PWM to enable B cell activation by immunostimulatory DNA. Based on these findings we propose that the lectin sensitizes B cells for TLR stimulation as described for B cell receptor ligation and that B cell mitogenicity of PWM preparations results from synergistic activity of the poke weed lectin and microbial TLR ligands present in the PWM preparations

    Multiplexed heat shock protein microarray as a screening platform for the selection of novel drug compounds

    Get PDF
    In diseases such as cancer, Alzheimer’s disease or malaria, disease-related proteins take advantage of the heat shock protein (HSP) control system for their own activation or maturation. There is a quest to find inhibitors that specifically bind to the HSPs. Here, we report on a novel multiplexed assay system for inhibitor screening based on a protein microarray (MA) technique that was developed for routine applications with storable MAs. Purified HSPs are printed as full-length proteins on microarrays and used as a drug target for the screening of new inhibitors. Derivatives obtained by a combination of biological and chemical synthesis were tested as competitors of ATP with a suggested affinity for several HSP proteins which are hHSP from human, AtHSP83 (Arabidopsis thaliana) and HtpG from Helicobacter pylori. Some of these new derivatives exerted selectivity between human and bacterial heat shock proteins. Printed human HSP90 was used to test the binding of denatured proteins on the client binding site of human HSP90, since the full-length HSP maintains the capability to bind putative clients or cochaperones. Initial data revealed that the microarray application can be used to identify directly elevated heat-shock protein levels in cancer cell lysates. We suggest that microarray-based assaying of HSP levels can be used as a marker for determining stress levels.DFG/Ki 13-

    Yersinia V–Antigen Exploits Toll-like Receptor 2 and CD14 for Interleukin 10–mediated Immunosuppression

    Get PDF
    A characteristic of the three human-pathogenic Yersinia spp. (the plague agent Yersinia pestis and the enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica) is the expression of the virulence (V)-antigen (LcrV). LcrV is a released protein which is involved in contact-induced secretion of yersinia antihost proteins and in evasion of the host's innate immune response. Here we report that recombinant LcrV signals in a CD14- and toll-like receptor 2 (TLR2)-dependent fashion leading to immunosuppression by interleukin 10 induction. The impact of this immunosuppressive effect for yersinia pathogenesis is underlined by the observation that TLR2-deficient mice are less susceptible to oral Y. enterocolitica infection than isogenic wild-type animals. In summary, these data demonstrate a new ligand specificity of TLR2, as LcrV is the first known secreted and nonlipidated virulence-associated protein of a Gram-negative bacterium using TLR2 for cell activation. We conclude that yersiniae might exploit host innate pattern recognition molecules and defense mechanisms to evade the host immune response

    TLR4-induced IFN-γ production increases TLR2 sensitivity and drives Gram-negative sepsis in mice

    Get PDF
    Gram-negative bacterial infection is a major cause of sepsis and septic shock. An important inducer of inflammation underlying both syndromes is the cellular recognition of bacterial products through pattern recognition receptors (PRRs), including Toll-like receptors (TLRs). We identified a novel antagonistic mAb (named 1A6) that recognizes the extracellular portion of the TLR4–MD-2 complex. If applied to mice before infection with clinical isolates of Salmonella enterica or Escherichia coli and subsequent antibiotic therapy, 1A6 prevented otherwise fatal shock, whereas application of 1A6 after infection was ineffective. In contrast, coapplication of 1A6 and an anti-TLR2 mAb up to 4 h after infection with Gram-negative bacteria, in combination with the start of antibiotic therapy (mimicking clinical conditions), provided robust protection. Consistent with our findings in mice, dual blockade of TLR2 and TLR4 inhibited TNF-α release from human peripheral blood mononuclear cells upon Gram-negative bacterial infection/antibiotic therapy. Both murine splenocytes and human PBMCs released IFN-γ in a TLR4-dependent manner, leading to enhanced surface TLR2 expression and sensitivity for TLR2 ligands. Our results implicate TLR2 as an important, TLR4-driven sensor of Gram-negative bacterial infection and provide a rationale for blockade of both TLRs, in addition to antibiotic therapy for the treatment of Gram-negative bacterial infection

    Generation of anti-TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptor (TLR) 2 is a component of the innate immune system and senses specific pathogen associated molecular patterns (PAMPs) of both microbial and viral origin. Cell activation via TLR2 and other pattern recognition receptors (PRRs) contributes to sepsis pathology and chronic inflammation both relying on overamplification of an immune response. Intracellular antibodies expressed and retained inside the endoplasmatic reticulum (ER-intrabodies) are applied to block translocation of secreted and cell surface molecules from the ER to the cell surface resulting in functional inhibition of the target protein. Here we describe generation and application of a functional anti-TLR2 ER intrabody (αT2ib) which was generated from an antagonistic monoclonal antibody (mAb) towards human and murine TLR2 (T2.5) to inhibit the function of TLR2. αT2ib is a scFv fragment comprising the variable domain of the heavy chain and the variable domain of the light chain of mAb T2.5 linked together by a synthetic (Gly<sub>4</sub>Ser)<sub>3 </sub>amino acid sequence.</p> <p>Results</p> <p>Coexpression of αT2ib and mouse TLR2 in HEK293 cells led to efficient retention and accumulation of TLR2 inside the ER compartment. Co-immunoprecipitation of human TLR2 with αT2ib indicated interaction of αT2ib with its cognate antigen within cells. αT2ib inhibited NF-κB driven reporter gene activation via TLR2 but not through TLR3, TLR4, or TLR9 if coexpressed in HEK293 cells. Co-transfection of human TLR2 with increasing amounts of the expression plasmid encoding αT2ib into HEK293 cells demonstrated high efficiency of the TLR2-αT2ib interaction. The αT2ib open reading frame was integrated into an adenoviral cosmid vector for production of recombinant adenovirus (AdV)-αT2ib. Transduction with AdVαT2ib specifically inhibited TLR2 surface expression of murine RAW264.7 and primary macrophages derived from bone marrow (BMM). Furthermore, TLR2 activation dependent TNFα mRNA accumulation, as well as TNFα translation and release by macrophages were largely abrogated upon transduction of αT2ib. αT2ib was expressed in BMM and splenocytes over 6 days upon systemic infection with AdVαT2ib. Systemic transduction applying AdVαT2ib rendered immune cells largely non-responsive to tripalmitoyl-peptide challenge. Our results show persistent paralysis of TLR2 activity and thus inhibition of immune activation.</p> <p>Conclusion</p> <p>The generated anti-TLR2 scFv intrabody inhibits specifically and very efficiently TLR2 ligand-driven cell activation <it>in vitro </it>and <it>ex vivo</it>. This indicates a therapeutic potential of αT2ib in microbial or viral infections.</p

    Direct Toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease

    Get PDF
    The pathogenesis of chronic inflammatory joint diseases such as adult and juvenile rheumatoid arthritis and Lyme arthritis is still poorly understood. Central to the various hypotheses in this respect is the notable involvement of T and B cells. Here we develop the premise that the nominal antigen-independent, polyclonal activation of preactivated T cells via Toll-like receptor (TLR)-2 has a pivotal role in the initiation and perpetuation of pathogen-induced chronic inflammatory joint disease. We support this with the following evidence. Both naive and effector T cells express TLR-2. A prototypic lipoprotein, Lip-OspA, from the etiological agent of Lyme disease, namely Borrelia burgdorferi, but not its delipidated form or lipopolysaccharide, was able to provide direct antigen-nonspecific co-stimulatory signals to both antigen-sensitized naive T cells and cytotoxic T lymphocyte (CTL) lines via TLR-2. Lip-OspA induced the proliferation and interferon (IFN)-γ secretion of purified, anti-CD3-sensitized, naive T cells from C57BL/6 mice but not from TLR-2-deficient mice. Induction of proliferation and IFN-γ secretion of CTL lines by Lip-OspA was independent of T cell receptor (TCR) engagement but was considerably enhanced after suboptimal TCR activation and was inhibitable by monoclonal antibodies against TLR-2

    Decreased Secondary Lesion Growth and Attenuated Immune Response after Traumatic Brain Injury in Tlr2/4(-/-) Mice

    Get PDF
    Danger-associated molecular patterns are released by damaged cells and trigger neuroinflammation through activation of non-specific pattern recognition receptors, e. g., toll-like receptors (TLRs). Since the role of TLR2 and 4 after traumatic brain injury (TBI) is still unclear, we examined the outcome and the expression of pro-inflammatory mediators after experimental TBI in Tlr2/4(-/-) and wild-type (WT) mice. Tlr2/4(-/-) and WT mice were subjected to controlled cortical injury and contusion volume and brain edema formation were assessed 24 h thereafter. Expression of inflammatory markers in brain tissue was measured by quantitative PCR 15 min, 3 h, 6 h, 12 h, and 24 h after controlled cortical impact (CCI). Contusion volume was significantly attenuated in Tlr2/4(-/-) mice (29.7 +/- 0.7 mm3 as compared to 33.5 +/- 0.8 mm(3) in WT;p < 0.05) after CCI while brain edema was not affected. Only interleukin (IL)-1 beta gene expression was increased after CCI in the Tlr2/4(-/-) relative to WT mice. Inducible nitric oxide synthetase, TNF, IL-6, and COX-2 were similar in injured WT and Tlr2/4(-/-) mice, while the increase in high-mobility group box 1 was attenuated at 6 h. TLR2 and 4 are consequently shown to potentially promote secondary brain injury after experimental CCI via neuroinflammation and may therefore represent a novel therapeutic target for the treatment of TBI

    Is Simultaneous Binding to DNA and Gyrase Important for the Antibacterial Activity of Cystobactamids?

    Get PDF
    Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 μM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids’ gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit
    corecore