932 research outputs found

    Chem-News - An On-Line Pesticide Information Program

    Get PDF
    Computerization of pesticide information is rapidly becoming a necessity as regulatory agencies expand their activities through enforcement, monitoring, and certification of pesticide applicators. Educational institutions responsible for providing pesticide information and pesticide applicator training for certification must also expand their capabilities for immediate updating and faster retrieval. Two programs at Cornell University, the Chemical-Pesticides Program and the Pesticide Impact Assessment Program (PIAP), are presently involved in developing on-line pesticide information for researchers, extension personnel, and regulatory agencies, as well as for those using pesticides

    Integral correlation measures for multiparticle physics

    Full text link
    We report on a considerable improvement in the technique of measuring multiparticle correlations via integrals over correlation functions. A modification of measures used in the characterization of chaotic dynamical sytems permits fast and flexible calculation of factorial moments and cumulants as well as their differential versions. Higher order correlation integral measurements even of large multiplicity events such as encountered in heavy ion collisons are now feasible. The change from ``ordinary'' to ``factorial'' powers may have important consequences in other fields such as the study of galaxy correlations and Bose-Einstein interferometry.Comment: 23 pages, 6 tar-compressed uuencoded PostScript figures appended, preprint TPR-92-4

    The [4+2]‐Cycloaddition of α‐Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero‐Diels–Alder Reactions—Experimental and Computational Studies

    Get PDF
    The [4+2]‐cycloadditions of α‐nitrosoalkenes with thiochalcones occur with high selectivity at the thioketone moiety of the dienophile providing styryl‐substituted 4H‐1,5,2‐oxathiazines in moderate to good yields. Of the eight conceivable hetero‐Diels–Alder adducts only this isomer was observed, thus a prototype of a highly periselective and regioselective cycloaddition has been identified. Analysis of crude product mixtures revealed that the α‐nitrosoalkene also adds competitively to the thioketone moiety of the thiochalcone dimer affording bis‐heterocyclic [4+2]‐cycloadducts. The experiments are supported by high‐level DFT calculations that were also extended to related hetero‐Diels–Alder reactions of other nitroso compounds and thioketones. These calculations reveal that the title cycloadditions are kinetically controlled processes confirming the role of thioketones as superdienophiles. The computational study was also applied to the experimentally studied thiochalcone dimerization, and showed that the 1,2‐dithiin and 2H‐thiopyran isomers are in equilibrium with the monomer. Again, the DFT calculations indicate kinetic control of this process

    New model for system of mesoscopic Josephson contacts

    Full text link
    Quantum fluctuations of the phases of the order parameter in 2D arrays of mesoscopic Josephson junctions and their effect on the destruction of superconductivity in the system are investigated by means of a quantum-cosine model that is free of the incorrect application of the phase operator. The proposed model employs trigonometric phase operators and makes it possible to study arrays of small superconducting granules, pores filled with superfluid helium, or Josephson junctions in which the average number of particles n0n_0 (effective bosons, He atoms, and so on) is small, and the standard approach employing the phase operator and the particle number operator as conjugate ones is inapplicable. There is a large difference in the phase diagrams between arrays of macroscopic and mesoscopic objects for n0<5n_0 < 5 and U<JU<J (UU is the characteristic interaction energy of the particle per granule and JJ is the Josephson coupling constant). Reentrant superconductivity phenomena are discussed.Comment: 4 pages, 3 Postscript figure

    Criticality, Fractality and Intermittency in Strong Interactions

    Full text link
    Assuming a second-order phase transition for the hadronization process, we attempt to associate intermittency patterns in high-energy hadronic collisions to fractal structures in configuration space and corresponding intermittency indices to the isothermal critical exponent at the transition temperature. In this approach, the most general multidimensional intermittency pattern, associated to a second-order phase transition of the strongly interacting system, is determined, and its relevance to present and future experiments is discussed.Comment: 15 pages + 2 figures (available on request), CERN-TH.6990/93, UA/NPPS-5-9

    Factorial Moments of Continuous Order

    Full text link
    The normalized factorial moments FqF_q are continued to noninteger values of the order qq, satisfying the condition that the statistical fluctuations remain filtered out. That is, for Poisson distribution Fq=1F_q = 1 for all qq. The continuation procedure is designed with phenomenology and data analysis in mind. Examples are given to show how FqF_q can be obtained for positive and negative values of qq. With qq being continuous, multifractal analysis is made possible for multiplicity distributions that arise from self-similar dynamics. A step-by-step procedure of the method is summarized in the conclusion.Comment: 15 pages + 9 figures (figures available upon request), Late

    Theoretical and Experimental Study of the Vibration of Axisymmetric Viscous Liquid Bridges

    Get PDF
    n this paper the dynamics of axisymmetric liquid columns held by capillary forces between two circular, concentric, solid disks is considered. The problem has been solved by using a one‐dimensional model known in the literature as the Cosserat model, which includes viscosity effects, where the axial velocity is considered constant in each section of the liquid bridge. The dynamic response of the bridge to an excitation consisting of a small‐amplitude vibration of the supporting disks has been solved by linearizing the Cosserat model. It has been assumed that such excitation is harmonic so that the analysis has been performed in the frequency domain. The particular case of a cylindrical liquid bridge has been analytically studied and the transfer function has been calculated in the cases of oscillation of both disks (either in phase or in counterphase) or only of one of them. The resolution of the general formulation for a noncylindrical liquid bridge has been numerically made by using an implicit finite difference method. In this case, the influence of the volume of the liquid column and of the residual gravity level on the first resonance has been studied, and the results compared, for the inviscid case, with other potential models, both one and three dimensional. To demonstrate the usefulness of this theoretical model in predicting the vibrational behavior of axisymmetric viscous liquid bridges, some experiments have been performed by using the neutral buoyancy technique (also known as the Plateau technique) to simulate reduced gravity conditions, with good agreement between the results of the model and experiments

    A Color Mutation Model of Soft Interaction in High Energy Hadronic Collisions

    Get PDF
    A comprehensive model, called ECOMB, is proposed to describe multiparticle production by soft interaction. It incorporates the eikonal formalism, parton model, color mutation, branching and recombination. The physics is conceptually opposite to the dynamics that underlies the fragmentation of a string. The partons are present initially in a hadronic collision; they form a single, large, color-neutral cluster until color mutation of the quarks leads to a fission of the cluster into two color-neutral subclusters. The mutation and branching processes continue until only qqˉq\bar q pairs are left in each small cluster. The model contains self-similar dynamics and exhibits scaling behavior in the factorial moments. It can satisfactorily reproduce the intermittency data that no other model has been able to fit.Comment: 24 pages including 11 figures in revtex epsf styl

    Studies of multiplicity in relativistic heavy-ion collisions

    Full text link
    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.Comment: "Focus on Multiplicity" Internationsl Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17-19, 2003, 16 pages, 15 figure

    On the Consequences of Retaining the General Validity of Locality in Physical Theory

    Full text link
    The empirical validity of the locality (LOC) principle of relativity is used to argue in favour of a local hidden variable theory (HVT) for individual quantum processes. It is shown that such a HVT may reproduce the statistical predictions of quantum mechanics (QM), provided the reproducibility of initial hidden variable states is limited. This means that in a HVT limits should be set to the validity of the notion of counterfactual definiteness (CFD). This is supported by the empirical evidence that past, present, and future are basically distinct. Our argumentation is contrasted with a recent one by Stapp resulting in the opposite conclusion, i.e. nonlocality or the existence of faster-than-light influences. We argue that Stapp's argumentation still depends in an implicit, but crucial, way on both the notions of hidden variables and of CFD. In addition, some implications of our results for the debate between Bohr and Einstein, Podolsky and Rosen are discussed.Comment: revtex, 11 page
    • 

    corecore