12 research outputs found

    Generalized Gravity and a Ghost

    Full text link
    We show that generalized gravity theories involving the curvature invariants of the Ricci tensor and the Riemann tensor as well as the Ricci scalar are equivalent to multi- scalar-tensor gravities with four derivatives terms. By expanding the action around a vacuum spacetime, the action is reduced to that of the Einstein gravity with four derivative terms, and consequently there appears a massive spin-2 ghost in such generalized gravity theories in addition to a massive spin-0 field.Comment: 8 pages, a reference adde

    Cosmological Evolution in 1/R-Gravity Theory

    Full text link
    Recently, corrections of the L(R)L(R) type to Einstein-Hilbert action that become important at small curvature are proposed. Those type of models intend to explain the observed cosmic acceleration without dark energy. We derive the full Modified Friedmann equation in the Palatini formulation of those modified gravity model of the L(R)L(R) type. Then, we discuss various cosmological predictions of the Modified Friedmann equation.Comment: 7 pages, 5 figures. Accepted for publication in Class.Quant.Gra

    Modified Friedmann Equations in R1^{-1}-Modified Gravity

    Full text link
    Recently, corrections to Einstein-Hilbert action that become important at small curvature are proposed. We discuss the first order and second order approximations to the field equations derived by the Palatini variational principle. We work out the first and second order Modified Friedmann equations and present the upper redshift bounds when these approximations are valid. We show that the second order effects can be neglected on the cosmological predictions involving only the Hubble parameter itself, e.g. the various cosmological distances, but the second order effects can not be neglected in the predictions involving the derivatives of the Hubble parameter. Furthermore, the Modified Friedmann equations fit the SN Ia data at an acceptable level.Comment: 15 pages, 6 figures, v2: discussion added; v3: minor changes, accepted by Class. and Quan. Gra

    Modified-Source Gravity and Cosmological Structure Formation

    Full text link
    One way to account for the acceleration of the universe is to modify general relativity, rather than introducing dark energy. Typically, such modifications introduce new degrees of freedom. It is interesting to consider models with no new degrees of freedom, but with a modified dependence on the conventional energy-momentum tensor; the Palatini formulation of f(R)f(R) theories is one example. Such theories offer an interesting testing ground for investigations of cosmological modified gravity. In this paper we study the evolution of structure in these ``modified-source gravity'' theories. In the linear regime, density perturbations exhibit scale dependent runaway growth at late times and, in particular, a mode of a given wavenumber goes nonlinear at a higher redshift than in the standard Λ\LambdaCDM model. We discuss the implications of this behavior and why there are reasons to expect that the growth will be cut off in the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we briefly describe how upcoming measurements may probe the differences between the modified theory and the standard Λ\LambdaCDM model.Comment: 22 pages, 6 figures, uses iopart styl

    The conformal frame freedom in theories of gravitation

    Full text link
    It has frequently been claimed in the literature that the classical physical predictions of scalar tensor theories of gravity depend on the conformal frame in which the theory is formulated. We argue that this claim is false, and that all classical physical predictions are conformal-frame invariants. We also respond to criticisms by Vollick [gr-qc/0312041], in which this issue arises, of our recent analysis of the Palatini form of 1/R gravity.Comment: 9 pages, no figures, revtex; final published versio

    Could dark energy be vector-like?

    Get PDF
    In this paper I explore whether a vector field can be the origin of the present stage of cosmic acceleration. In order to avoid violations of isotropy, the vector has be part of a ``cosmic triad'', that is, a set of three identical vectors pointing in mutually orthogonal spatial directions. A triad is indeed able to drive a stage of late accelerated expansion in the universe, and there exist tracking attractors that render cosmic evolution insensitive to initial conditions. However, as in most other models, the onset of cosmic acceleration is determined by a parameter that has to be tuned to reproduce current observations. The triad equation of state can be sufficiently close to minus one today, and for tachyonic models it might be even less than that. I briefly analyze linear cosmological perturbation theory in the presence of a triad. It turns out that the existence of non-vanishing spatial vectors invalidates the decomposition theorem, i.e. scalar, vector and tensor perturbations do not decouple from each other. In a simplified case it is possible to analytically study the stability of the triad along the different cosmological attractors. The triad is classically stable during inflation, radiation and matter domination, but it is unstable during (late-time) cosmic acceleration. I argue that this instability is not likely to have a significant impact at present.Comment: 28 pages, 6 figures. Uses RevTeX4. v2: Discussion about relation to phantoms added and additional references cite

    The Laser Astrometric Test of Relativity Mission

    Get PDF
    This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach ability to measure effects of the next post-Newtonian order (1/c^4) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12 December 2003, Washington, D

    R2R^2 corrections to the cosmological dynamics of inflation in the Palatini formulation

    Full text link
    We investigate the corrections to the inflationary cosmological dynamics due to a R2R^2 term in the Palatini formulation which may arise as quantum corrections to the effective Lagrangian in early universe. We found that the standard Friedmann equation will not be changed when the scalar field is in the potential energy dominated era. However, in the kinetic energy dominated era, the standard Friedmann equation will be modified and in the case of closed and flat universe, the Modified Friedmann equation will automatically require that the initial kinetic energy density of the scalar field must be in sub-Planckian scale.Comment: 11 pages, no figures. Accepted by Class.Quant.Grav.v2:References adde

    One-loop f(R) gravity in de Sitter universe

    Full text link
    Motivated by the dark energy issue, the one-loop quantization approach for a family of relativistic cosmological theories is discussed in some detail. Specifically, general f(R)f(R) gravity at the one-loop level in a de Sitter universe is investigated, extending a similar program developed for the case of pure Einstein gravity. Using generalized zeta regularization, the one-loop effective action is explicitly obtained off-shell, what allows to study in detail the possibility of (de)stabilization of the de Sitter background by quantum effects. The one-loop effective action maybe useful also for the study of constant curvature black hole nucleation rate and it provides the plausible way of resolving the cosmological constant problem.Comment: 25 pages, Latex file. Discussion enlarged, new references added. Version accepted in JCA
    corecore