1,021 research outputs found

    Trusty URIs: Verifiable, Immutable, and Permanent Digital Artifacts for Linked Data

    Get PDF
    To make digital resources on the web verifiable, immutable, and permanent, we propose a technique to include cryptographic hash values in URIs. We call them trusty URIs and we show how they can be used for approaches like nanopublications to make not only specific resources but their entire reference trees verifiable. Digital artifacts can be identified not only on the byte level but on more abstract levels such as RDF graphs, which means that resources keep their hash values even when presented in a different format. Our approach sticks to the core principles of the web, namely openness and decentralized architecture, is fully compatible with existing standards and protocols, and can therefore be used right away. Evaluation of our reference implementations shows that these desired properties are indeed accomplished by our approach, and that it remains practical even for very large files.Comment: Small error corrected in the text (table data was correct) on page 13: "All average values are below 0.8s (0.03s for batch mode). Using Java in batch mode even requires only 1ms per file.

    D-brane Solitons in Supersymmetric Sigma-Models

    Get PDF
    Massive D=4 N=2 supersymmetric sigma models typically admit domain wall (Q-kink) solutions and string (Q-lump) solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric `kink-lump' solution in which a string ends on a wall, and show that it has an effective realization as a BIon of the D=4 super DBI-action. It is also shown to have a time-dependent Q-kink-lump generalization which reduces to the Q-lump in a limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric sigma-model solitons are shown to be realized in M-theory as calibrated, or `Q-calibrated', M5-branes in an M-monopole background.Comment: 16 pages, 3 figures, Late

    Model for a Universe described by a non-minimally coupled scalar field and interacting dark matter

    Full text link
    In this work it is investigated the evolution of a Universe where a scalar field, non-minimally coupled to space-time curvature, plays the role of quintessence and drives the Universe to a present accelerated expansion. A non-relativistic dark matter constituent that interacts directly with dark energy is also considered, where the dark matter particle mass is assumed to be proportional to the value of the scalar field. Two models for dark matter pressure are considered: the usual one, pressureless, and another that comes from a thermodynamic theory and relates the pressure with the coupling between the scalar field and the curvature scalar. Although the model has a strong dependence on the initial conditions, it is shown that the mixture consisted of dark components plus baryonic matter and radiation can reproduce the expected red-shift behavior of the deceleration parameter, density parameters and luminosity distance.Comment: 11 pages and 6 figures. To appear in GR

    A quantum mechanical relation connecting time, temperature, and cosmological constant of the universe: Gamow's relation revisited as a special case

    Get PDF
    Considering our expanding universe as made up of gravitationally interacting particles which describe particles of luminous matter and dark matter and dark energy which is described by a repulsive harmonic potential among the points in the flat 3-space, we derive a quantum mechanical relation connecting, temperature of the cosmic microwave background radiation, age, and cosmological constant of the universe. When the cosmological constant is zero, we get back the Gamow's relation with a much better coefficient. Otherwise, our theory predicts a value of the cosmological constant 2.010−56cm−22.0 10^{-56} {\rm {cm^{-2}}} when the present values of cosmic microwave background temperature of 2.728 K and age of the universe 14 billion years are taken as input.Comment: 4 pages, 1 figure, Study of the Universe from a condensed matter point of view, section III corrected with a single body potentia

    Comparing Poynting flux dominated magnetic tower jets with kinetic-energy dominated jets

    Full text link
    Magnetic Towers represent one of two fundamental forms of MHD outflows. Driven by magnetic pressure gradients, these flows have been less well studied than magneto-centrifugally launched jets even though magnetic towers may well be as common. Here we present new results exploring the behavior and evolution of magnetic tower outflows and demonstrate their connection with pulsed power experimental studies and purely hydrodynamic jets which might represent the asymptotic propagation regimes of magneto-centrifugally launched jets. High-resolution AMR MHD simulations (using the AstroBEAR code) provide insights into the underlying physics of magnetic towers and help us constrain models of their propagation. Our simulations have been designed to explore the effects of thermal energy losses and rotation on both tower flows and their hydro counterparts. We find these parameters have significant effects on the stability of magnetic towers, but mild effects on the stability of hydro jets. Current-driven perturbations in the Poynting Flux Dominated (PDF) towers are shown to be amplified in both the cooling and rotating cases. Our studies of the long term evolution of the towers show that the formation of weakly magnetized central jets within the tower are broken up by these instabilities becoming a series of collimated clumps which magnetization properties vary over time. In addition to discussing these results in light of laboratory experiments, we address their relevance to astrophysical observations of young star jets and outflow from highly evolved solar type stars.Comment: 11 pages, 4 figures, accepted for publication in the High Energy Density Physics Journal corresponding to the proceedings of the 9th International Conference on High Energy Density Laboratory Astrophysics, May 4, 2012, Tallahassee Florid

    The Shapes of Dirichlet Defects

    Get PDF
    If the vacuum manifold of a field theory has the appropriate topological structure, the theory admits topological structures analogous to the D-branes of string theory, in which defects of one dimension terminate on other defects of higher dimension. The shapes of such defects are analyzed numerically, with special attention paid to the intersection regions. Walls (co-dimension 1 branes) terminating on other walls, global strings (co-dimension 2 branes) and local strings (including gauge fields) terminating on walls are all considered. Connections to supersymmetric field theories, string theory and condensed matter systems are pointed out.Comment: 24 pages, RevTeX, 21 eps figure

    Electromagnetic Polarization Effects due to Axion Photon Mixing

    Full text link
    We investigate the effect of axions on the polarization of electromagnetic waves as they propagate through astronomical distances. We analyze the change in the dispersion of the electromagnetic wave due to its mixing with axions. We find that this leads to a shift in polarization and turns out to be the dominant effect for a wide range of frequencies. We analyze whether this effect or the decay of photons into axions can explain the large scale anisotropies which have been observed in the polarizations of quasars and radio galaxies. We also comment on the possibility that the axion-photon mixing can explain the dimming of distant supernovae.Comment: 18 pages, 1 figur

    A New Finite-lattice study of the Massive Schwinger Model

    Get PDF
    A new finite lattice calculation of the low lying bound state energies in the massive Schwinger model is presented, using a Hamiltonian lattice formulation. The results are compared with recent analytic series calculations in the low mass limit, and with a new higher order non-relativistic series which we calculate for the high mass limit. The results are generally in good agreement with these series predictions, and also with recent calculations by light cone and related techniques

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.
    • 

    corecore