169 research outputs found

    An investigation of bupropion substitution for the interoceptive stimulus effects of nicotine

    Get PDF
    smoking cessation aid has not been fully elucidated, studies have found that bupropion and nicotine share behavioral and neurophysiological properties suggesting that bupropion might serve as a substitute for nicotine. In fact, bupropion prompts nicotine-appropriate responding in operant and Pavlovian drug discrimination studies with rats. A majority of the literature examining this substitution pattern has been done with an operant paradigm. The present research extended this literature by further characterizing the behavioral and neuropharmacological properties underlying the substitution for a nicotine conditioned stimulus (CS). Examination of the dose-effect function and temporal dynamics of this substitution pattern showed that bupropion (20 mg/kg) produced conditioned responding similar to nicotine (0.4 mg base/kg) (ED50=9.9 mg/kg) at 15 and 30 min after injection and partially substituted 5 and 60 min post-injection. Bupropion produced a pattern of conditioned responding similar to nicotine during a 60-min extinction test. Additionally, it has been hypothesized that bupropion and nicotine have an overlapping dopaminergic mechanism. We tested the effects of bupropion pretreatment the nicotine dose-effect function and the ability of dopamine antagonist to block the substitution of bupropion for nicotine. Pretreatment with doses of bupropion that did not substitute for the nicotine stimulus (5 and 10 mg/kg) did not effect nicotine conditioned responding; pretreatment with 20 mg/kg attenuated nicotine-evoked responding. Pretreatment with the dopamine antagonists SCH-23390 and eticlopride blocked the substitution. Finally, S,S-hydroxybupropion, the major metabolite of bupropion in humans, did not substitute for the nicotine CS

    Interactions between 2′-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues and acetylcholine-binding protein inform on potent antagonist activity against nicotinic receptors

    Get PDF
    Low-nanomolar binding constants were recorded for a series of six 2′-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues with acetylcholine-binding protein (AChBP). The crystal structures of three complexes with AChBP reveal details of molecular recognition in the orthosteric binding site and imply how the other three ligands bind. Comparisons exploiting AChBP as a surrogate for α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) suggest that the key interactions are conserved. The ligands interact with the same residues as the archetypal nAChR agonist nicotine yet display greater affinity, thereby rationalizing their in vivo activity as potent antagonists of nicotine-induced antinociception. An oxyanion-binding site is formed on the periphery of the AChBP orthosteric site by Lys42, Asp94, Glu170 and Glu210. These residues are highly conserved in the human α4, β2 and α7 nAChR sequences. However, specific sequence differences are discussed that could contribute to nAChR subtype selectivity and in addition may represent a point of allosteric modulation. The ability to engage with this peripheral site may explain, in part, the function of a subset of ligands to act as agonists of α7 nAChR

    Withdrawal from Repeated Cocaine Alters Dopamine Transporter Protein Turnover in the Rat Striatum

    Get PDF
    ABSTRACT Several studies have shown that repeated cocaine administration, followed by withdrawal, alters dopamine transporter (DAT) levels in the rat. These changes must arise from changes in either transporter protein production or degradation, or both. Previously, our laboratory developed an approach to measure the synthesis rate, degradation rate constant, and half-life of DAT in the rat striatum and nucleus accumbens after administration of the irreversible dopamine transporter ligand, RTI-76 . These initial studies showed that: 1) the half-life of the transporter was between 2 and 3 days in these two brain regions; 2) pretreatment with dopamine D1 and D2 receptor agonists and antagonists over several days differentially altered DAT half-lives in the striatum and nucleus accumbens; and 3) pretreatment with cocaine for several days increased the half-life of DAT by decreasing the degradation rate constant in both brain regions. In the present study, we determined that repeated pretreatment (10 days) with 20 mg/kg cocaine (i.p.) and a subsequent withdrawal period (10 days) alters the dopamine transporter turnover in the rat striatum, but not in the nucleus accumbens. Cocaine pretreatment and withdrawal reduced the half-life of the transporter protein from 2.1 days to 0.94 day in the striatum, but did not alter the half-life of 2.2 days in the nucleus accumbens. The results indicate the complex and long-lasting effects of cocaine administration on cellular processes. The mechanism(s) of these effects remains to be elucidated

    The κ-opioid receptor antagonist JDTic decreases ethanol intake in alcohol-preferring AA rats

    Get PDF
    Studies suggest that the kappa-opioidergic system becomes overactivated as ethanol use disorders develop. Nalmefene, a currently approved treatment for ethanol use disorders, may also elicit some of its main effects via the kappa-opioidergic system. However, the exact role of kappa-opioid receptors on regulating ethanol intake and contribution to the development of ethanol addiction remains to be elucidated. The aim of the present study was to clarify the role of accumbal kappa-opioid receptors in controlling ethanol intake in alcohol-preferring Alko Alcohol (AA) rats. Microinfusions of the long-acting and selective kappa-opioid receptor antagonist JDTic (1-15 mu g/site) were administered bilaterally into the nucleus accumbens shell of AA rats voluntarily consuming 10% ethanol solution in the intermittent, time-restricted two-bottle choice access paradigm. JDTic (10 mg/kg) was also administered subcutaneously. Both the acute and long-term effects of the treatment on ethanol intake were examined. As a reference, nor-BNI (3 mu g/site) was administered intra-accumbally. Systemically administered JDTic decreased ethanol intake significantly 2 days and showed a similar trend 4 days after administration. Furthermore, intra-accumbally administered JDTic showed a weak decreasing effect on ethanol intake long-term but had no acute effects. Intra-accumbal administration of nor-BNI tended to decrease ethanol intake. The results provide further evidence that kappa-opioid receptors play a role in controlling ethanol intake and that accumbal kappa-opioid receptors participate in the modulation of the reinforcing effects of ethanol. Furthermore, the results suggest that kappa-opioid receptor antagonists may be a valuable adjunct in the pharmacotherapy of ethanol use disorders.Peer reviewe

    Synthesis And Biological Evaluation Of Bupropion Analogues As Potential Pharmacotherapies For Smoking Cessation

    Get PDF
    Bupropion (2a) analogues were synthesized and tested for their ability to inhibit monoamine uptake and to antagonize the effects of human α3β4*, α4β2, α4β4, and α1 * nAChRs. The analogues were evaluated for their ability to block nicotine-induced effects in four tests in mice. Nine analogues showed increased monoamine uptake inhibition. Similar to 2a, all but one analogue show inhibition of nAChR function selective for human α3β4*-nAChR. Nine analogues have higher affinity at α3β4*-nAChRs than 2a. Four analogues also had higher affinity for α4β2 nAChR. Analogues 2r, 2m, and 2n with AD 50 values of 0.014,0.015, and 0.028 mg/kg were 87,81, and 43 times more potent than 2a in blocking nicotine-induced antinociception in the tail-flick test. Analogue 2x with IC50 values of 31 and 180 nM for DA and NE, respectively, and with IC50 of 0.62 and 9.8 μm for antagonism of α3β4 and α4β2 nAChRs had the best overall in vitro profile relative to 2a. © 2010 American Chemical Society

    Nicotinic Acetylcholine Receptor Efficacy And Pharmacological Properties Of 3-(Substituted Phenyl)-2β-Substituted Tropanes

    Get PDF
    There is a need for different and better aids to tobacco product use cessation. Useful smoking cessation aids, bupropion (2) and varenicline (3), share some chemical features with 3-phenyltropanes (4), which have promise in cocaine dependence therapy. Here we report studies to generate and characterize pharmacodynamic features of 3-phenyltropane analogues. These studies extend our work on the multiple molecular target model for aids to smoking cessation. We identified several new 3-phenyltropane analogues that are superior to 2 in inhibition of dopamine, norepinephrine, and sometimes serotonin reuptake. All of these ligands also act as inhibitors of nicotinic acetylcholine receptor (nAChR) function with a selectivity profile that favors, like 2, inhibition of α3β4*-nAChR. Many of these ligands also block acute effects of nicotine-induced antinociception, locomotor activity, and hypothermia. Importantly, all except one of the analogues tested have better potencies in inhibition of nicotine conditioned place preference than 2. We have identified new compounds that have utility as research tools and possible promise for treatment of nicotine dependence. © 2010 American Chemical Society

    Monoclonal antibodies that selectively recognize methamphetamine and methamphetamine like compounds

    Get PDF
    The invention generally relates to monoclonal antibodies that recognize at least one compound from the group consisting of (+) methamphetamine, (+) amphetamine, and (+) 3,4-methylenedioxymethamphetamine ((+) MDMA). Generally speaking, the monoclonal antibodies do not recognize (-) methamphetamine, (-) amphetamine, or (-) MDMA

    Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity

    Get PDF
    Background: Nor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor. Methods To evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS). Results: In each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism. Conclusions: The negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes

    Synthesis Of 2-(Substituted Phenyl)-355-Trimethylmorpholine Analogues And Their Effects On Monoamine Uptake Nicotinic Acetylcholine Receptor Function And Behavioral Effects Of Nicotine

    Get PDF
    Toward development of smoking cessation aids superior to bupropion (2), we describe synthesis of 2-(substituted phenyl)-3,5,5-trimethylmorpholine analogues 5a-5h and their effects on inhibition of dopamine, norepinephrine, and serotonin uptake, nicotinic acetylcholine receptor (nAChR) function, acute actions of nicotine, and nicotine-conditioned place preference (CPP). Several analogues encompassing aryl substitutions, N-alkylation, and alkyl extensions of the morpholine ring 3-methyl group provided analogues more potent in vitro than (S,S)-hydroxybupropion (4a) as inhibitors of dopamine or norepinephrine uptake and antagonists of nAChR function. All of the new (S,S)-5 analogues had better potency than (S,S)-4a as blockers of acute nicotine analgesia in the tail-flick test. Two analogues with highest potency at α3β4-nAChR and among the most potent transporter inhibitors have better potency than (S,S)-4a in blocking nicotine-CPP. Collectively, these findings illuminate mechanisms of action of 2 analogues and identify deshydroxybupropion analogues 5a-5h as possibly superior candidates as aids to smoking cessation. © 2011 American Chemical Society
    corecore