488 research outputs found

    Metric of a tidally perturbed spinning black hole

    Full text link
    We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe in the slow-motion approximation. This approximation assumes that the external universe changes slowly relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar ψ0\psi_0 by time-dependent electric and magnetic tidal tensors. This approximation, however, does not constrain how big the spin of the background hole can be and, in principle, the perturbed metric can model rapidly spinning holes. We first generate a potential by acting with a differential operator on ψ0\psi_0. From this potential we arrive at the metric perturbation by use of the Chrzanowski procedure in the ingoing radiation gauge. We provide explicit analytic formulae for this metric perturbation in spherical Kerr-Schild coordinates, where the perturbation is finite at the horizon. This perturbation is parametrized by the mass and Kerr spin parameter of the background hole together with the electric and magnetic tidal tensors that describe the time evolution of the perturbation produced by the external universe. In order to take the metric accurate far away from the hole, these tidal tensors should be determined by asymptotically matching this metric to another one valid far from the hole. The tidally perturbed metric constructed here could be useful in initial data constructions to describe the metric near the horizons of a binary system of spinning holes. This perturbed metric could also be used to construct waveforms and study the absorption of mass and angular momentum by a Kerr black hole when external processes generate gravitational radiation.Comment: 17 pages, 3 figures. Final PRD version, minor typos, etc corrected. v3: corrected typo in Eq. (35) and (57

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure

    Exploring the vicinity of the Bogomol'nyi-Prasad-Sommerfield bound

    Get PDF
    We investigate systems of real scalar fields in bidimensional spacetime, dealing with potentials that are small modifications of potentials that admit supersymmetric extensions. The modifications are controlled by a real parameter, which allows implementing a perturbation procedure when such parameter is small. The approach allows obtaining the energy and topological charge in closed forms, up to first order in the parameter. We illustrate the procedure with some examples. In particular, we show how to remove the degeneracy in energy for the one-field and the two-field solutions that appear in a model of two real scalar fields.Comment: Revtex, 9 pages, To be published in J. Phys.

    Gravitational collapse in asymptotically Anti-de Sitter/de Sitter backgrounds

    Full text link
    We study here the gravitational collapse of a matter cloud with a non-vanishing tangential pressure in the presence of a non-zero cosmological term. Conditions for bounce and singularity formation are derived for the model. It is also shown that when the tangential pressures vanish, the bounce and singularity conditions reduce to that of the dust case studied earlier. The collapsing interior is matched with an exterior which is asymptotically de Sitter or anti de Sitter, depending on the sign of cosmological constant. The junction conditions for matching the cloud to exterior are specified. The effect of the cosmological term on apparent horizons is studied in some detail, and the nature of central singularity is analyzed. We also discuss here the visibility of the singularity and implications for the cosmic censorship conjecture.Comment: 11 pages, 1 figure, Revtex

    On the equivalence principle and gravitational and inertial mass relation of classical charged particles

    Full text link
    We show that the locally constant force necessary to get a stable hyperbolic motion regime for classical charged point particles, actually, is a combination of an applied external force and of the electromagnetic radiation reaction force. It implies, as the strong Equivalence Principle is valid, that the passive gravitational mass of a charged point particle should be slight greater than its inertial mass. An interesting new feature that emerges from the unexpected behavior of the gravitational and inertial mass relation, for classical charged particles, at very strong gravitational field, is the existence of a critical, particle dependent, gravitational field value that signs the validity domain of the strong Equivalence Principle. For electron and proton, these critical field values are gc≃4.8×1031m/s2g_{c}\simeq 4.8\times 10^{31}m/s^{2} and gc≃8.8×1034m/s2g_{c}\simeq 8.8\times 10^{34}m/s^{2}, respectively

    On the K^+D Interaction at Low Energies

    Full text link
    The Kd reactions are considered in the impulse approximation with NN final-state interactions (NN FSI) taken into account. The realistic parameters for the KN phase shifts are used. The "quasi-elastic" energy region, in which the elementary KN interaction is predominantly elastic, is considered. The theoretical predictions are compared with the data on the K^+d->K^+pn, K^+d->K^0pp, K^+d->K^+d and K^+d total cross sections. The NN FSI effect in the reaction K^+d->K^+pn has been found to be large. The predictions for the Kd cross sections are also given for slow kaons, produced from phi(1020) decays, as the functions of the isoscalar KN scattering length a_0. These predictions can be used to extract the value of a_0 from the data.Comment: 22 pages, 5 figure

    Developing a model for decision-making around antibiotic prescribing for patients with COVID-19 pneumonia in acute NHS hospitals during the first wave of the COVID-19 pandemic: Qualitative results from the Procalcitonin Evaluation of Antibiotic use in COVID-19 Hospitalised patients (PEACH Study)

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Objective To explore and model factors affecting antibiotic prescribing decision-making early in the pandemic. Design Semistructured qualitative interview study. Setting National Health Service (NHS) trusts/health boards in England and Wales. Participants Clinicians from NHS trusts/health boards in England and Wales. Method Individual semistructured interviews were conducted with clinicians in six NHS trusts/health boards in England and Wales as part of the Procalcitonin Evaluation of Antibiotic use in COVID-19 Hospitalised patients study, a wider study that included statistical analysis of procalcitonin (PCT) use in hospitals during the first wave of the pandemic. Thematic analysis was used to identify key factors influencing antibiotic prescribing decisions for patients with COVID-19 pneumonia during the first wave of the pandemic (March to May 2020), including how much influence PCT test results had on these decisions. Results During the first wave of the pandemic, recommendations to prescribe antibiotics for patients with COVID-19 pneumonia were based on concerns about secondary bacterial infections. However, as clinicians gained more experience with COVID-19, they reported increasing confidence in their ability to distinguish between symptoms and signs caused by SARS-CoV-2 viral infection alone, and secondary bacterial infections. Antibiotic prescribing decisions were influenced by factors such as clinician experience, confidence, senior support, situational factors and organisational influences. A decision-making model was developed. Conclusion This study provides insight into the decision-making process around antibiotic prescribing for patients with COVID-19 pneumonia during the first wave of the pandemic. The importance of clinician experience and of senior review of decisions as factors in optimising antibiotic stewardship is highlighted. In addition, situational and organisational factors were identified that could be optimised. The model presented in the study can be used as a tool to aid understanding of the complexity of the decision-making process around antibiotic prescribing and planning antimicrobial stewardship support in the context of a pandemic. Trial registration number ISRCTN66682918

    The FeH Wing-Ford Band in Spectra of M Stars

    Get PDF
    We study the FeH Wing-Ford band at 9850 - 10200 Angstrons by means of the fit of synthetic spectra to the observations of M stars, employing recent model atmospheres. On the basis of the spectrum synthesis, we analyze the dependence of the band upon atmospheric parameters. FeH lines are a very sensitive surface gravity indicator, being stronger in dwarfs. They are also sensitive to metallicity (Allard & Hauschildt 1995). The blending with CN lines, which are stronger in giants, does not affect the response of the Wing-Ford band to surface gravity at low resolution (or high velocity dispersions) because CN lines, which are spread all along the spectrum, are smeared out at convolutions of FWHM \simgreat 3 Angstrons. We conclude that the Wing-Ford band is a suitable dwarf/giant indicator for the study of composite stellar populations.Comment: 23 pages + 11 figures in postscript format + 3 ps figures (Nos. 2, 6 and 7) available under request to [email protected]. Accepted for publication in The Astrophysical Journa

    Exactly Solvable Hydrogen-like Potentials and Factorization Method

    Get PDF
    A set of factorization energies is introduced, giving rise to a generalization of the Schr\"{o}dinger (or Infeld and Hull) factorization for the radial hydrogen-like Hamiltonian. An algebraic intertwining technique involving such factorization energies leads to derive nn-parametric families of potentials in general almost-isospectral to the hydrogen-like radial Hamiltonians. The construction of SUSY partner Hamiltonians with ground state energies greater than the corresponding ground state energy of the initial Hamiltonian is also explicitly performed.Comment: LaTex file, 21 pages, 2 PostScript figures and some references added. To be published in J. Phys. A: Math. Gen. (1998
    • …
    corecore