108 research outputs found
Protective Activity of Resveratrol in Cardio- and Cerebrovascular Diseases
Resveratrol (RSV) is a natural nonflavonoid polyphenol compound containing a stilbene structure similar to that of estrogen diethylstilbestrol. It is a fat-soluble compound existing in cis-, trans-, and piceid isomeric forms, isolated for the first time in 1940 from a plant used in traditional Chinese and Japanese medicine. Although initially used for cancer therapy, it has shown beneficial effects against most cardiovascular and cerebrovascular diseases. Its beneficial effects are mainly related to its antioxidant properties. Here, we review the metabolism and the ability of RSV to modulate redox signaling and to interact with multiple molecular targets of different intracellular pathways exerting protective effects against cardio-cerebrovascular diseases and metabolic disorders such as diabetes, reporting evidence in animal models and its efficacy and toxicity in humans. The aim of this chapter is to highlight the mechanisms, the biology, and the potential use of resveratrol to prevent, protect and aid cardio- and cerebrovascular diseases
Nonylphenol effects on human prostate non tumorigenic cells
Nonylphenol (NP) is an industrial chemical with estrogenic activity both in vivo and in vitro; estrogens play a critical role in the development of prostate and may be the cause of some pathological states, including cancer. In this study we examined the effects of NP on human prostate non tumorigenic epithelial cells (PNT1A) investigating on cell proliferation, interaction with estrogen receptors (ERs) and gene expression of genes involved in prostate diseases. We found that NP affects cell proliferation at 10(-6)M, promoting a cytoplasm-nucleus translocation of ERα and not ERβ, like the natural estrogen 17β-estradiol (E2). Moreover, we showed that NP enhances gene expression of key regulators of cell cycle. Estrogen selective antagonist ICI182780 in part reverted the observed effects of NP. These results confirm the estrogenic activity of NP and suggest that other transduction pathways may be involved in NP action on prostate
Pentraxin 3 induces morphological damage and vascular endothelial dysfunction through a P-selectin/ matrix metalloproteinase-1 pathway
Pentraxin 3 (PTX3), the prototype of long pentraxins, has been described to be associated with endothelial dysfunction in various disorders. However, no study has evaluated the direct effects of PTX3 on morphological changes and function of blood vessels. Through in vitro experiments of vascular reactivity and ultrastructural analyses, we demonstrate that PTX3 induces dysfunction and morphological damage in the endothelial layer of resistance vessels of mice through a P-selectin/matrix metalloproteinase- 1 pathway. The latter hampered the detachment of endothelial nitric oxide synthase from caveolin-1, leading to an impairment of nitric oxide signaling. In vivo we found that administering PTX3 to wild-type mice induces endothelial dysfunction and increases blood pressure, via P-selectin as demonstrated by electron microscopy. In isolated human umbilical vein endothelial cells, PTX3 significantly blunts nitric oxide production through the matrix metalloproteinase-1 pathway. Finally, using ELISA, we found that hypertensive patients constantly possess higher plasma levels of PTX3 compared with normotensive subjects. These data show for the first time a direct role of PTX3 inducing vascular dysfunction and morphological damage identifying the molecular mechanisms involved. These data strongly indicate a role for PTX3 in the pathophysiology of hypertension (Carrizzo et. Al., 2015).
We thank Professor Alberto Mantovani and his research group (Istituto Clinico Humanitas) for their precious support
A review of the molecular mechanisms underlying the development and progression of cardiac remodeling
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression.
Here we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling
Serum BPIFB4 levels classify health status in long-living individuals
People that reach extreme ages (Long-Living Individuals, LLIs) are object of intense investigation for increase/decrease of genetic variant frequencies, genetic methylation levels, protein abundance in serum and tissues. The aim of these studies is the discovery of the mechanisms behind LLIs extreme longevity and the identification of markers of well-being. We have recently associated a BPIFB4 haplotype (LAV) with exceptional longevity under a homozygous genetic model, and identified that CD34(+) of LLIs subjects express higher BPIFB4 transcript as compared to CD34(+) of control population. It would be of interest to correlate serum BPIFB4 protein levels with exceptional longevity and health status of LLIs
A Novel Combination of High-Load Omega-3 Lysine Complex (AvailOm®) and Anthocyanins Exerts Beneficial Cardiovascular Effects
Omega-3 fatty acids have been shown to exert several beneficial effects in the prevention of cardiovascular and cerebrovascular diseases. The objective of the present study was to analyze the effects of a novel high-load omega-3 lysine complex, AvailOm®, its related constituents and a novel mixture of AvailOm® with specific vasoactive anthocyanins on vascular function in mice resistance artery. Pressure myograph was used to perform vascular reactivity studies. Nitric oxide and oxidative stress were assessed by difluorofluorescein diacetate and dihydroethidium, respectively. Increasing doses of AvailOm® exerted a dose-response vasorelaxation via AMPK-eNOS-mediated signaling. Omega-3 Ethyl Ester was identified as the main bioactive derivative of AvailOm®, being capable of inducing vasorelaxant action to the same extent of entire product. The combination of AvailOm® with a mix of potent vasoactive anthocyanins (C3-glu + DP3-glu + Mal3-glu + Mal3-gal + PEO3-gal), strongly protected mesenteric arteries from vascular dysfunction and oxidative stress evoked by oxidized-LDL. These data demonstrate for the first time the direct effects of AvailOm® on resistance arteries. The evidence that the combination of specific vasoactive anthocyanins and AvailOm® further enhanced the vasculoprotective properties of these compounds, may offer new promising perspectives for preventing the onset of cardiovascular and cerebrovascular events
Lipoprotein(a) levels and risk of adverse events after myocardial infarction in patients with and without diabetes
Introduction: The aim of this study was to evaluate the association of lipoprotein(a) [Lp(a)] levels with long-term outcome in patients with recent history of myocardial infarction (MI), and to investigate if diabetes may influence this association. Methods: Consecutive MI patients who underwent urgent/emergent coronary angiography from February 2013 to June 2019 were prospectively collected. The primary outcome was the composite of MI recurrence and all-cause death. The propensity score weighting technique was used to account for covariates potentially influencing the relationship between Lp(a) levels and the study outcomes. Results: The study population consisted of 1018 post-MI patients (median age 63 years). Diabetes was reported in 280 patients (27.5%), who showed lower Lp(a) levels than patients without diabetes (p = 0.026). At a median follow-up of 1121 days, the primary outcome was reported in 182 patients (17.9%). At univariable Cox regression analysis, Lp(a) was associated with the risk of the primary outcome in the overall population and in non-diabetic patients, but not in diabetics. The adjusted Cox regression analysis confirmed the independent association between Lp(a) values and the primary outcome in non-diabetic patients, but not in diabetics. Lp(a) levels > 70 mg/dL were independently associated with the risk of the primary outcome in non-diabetic patients (adjusted HR: 2.839; 95% CI, 1.382-5.832), but not in diabetics. Conclusions: In this real-world post-MI population, increasing Lp(a) levels were significantly associated with the risk of recurrent MI and all-cause death, and very high Lp(a) serum concentration independently predicted long-term outcome in non-diabetic patients, but not in diabetics
- …