10 research outputs found

    Verification of a low fidelity fast simulation framework through RANS simulations

    Get PDF
    © 2019, The Author(s). Verification and validation of simulation models are critical steps in engineering. This paper aims at verifying the suitability of reduced order aerodynamic models used in an aeroservoelastic framework designed to analyze the flight dynamics of flexible aircraft, known as the Cranfield Accelerated Aircraft Loads Model. This framework is designed for rapid assessment of aircraft configurations at the conceptual design stage. Therefore, it utilizes or relies on methods that are of relatively low fidelity for high computational speeds, such as modified strip theory coupled with Leishmann–Beddoes unsteady aerodynamic model. Hence, verification against higher order methods is required. Although low fidelity models are widely used for conceptual design and loads assessments, the open literature still lacks a comparison against higher fidelity models. This work focuses on steady-trimmed flight conditions and investigates the effect of aerodynamic wing deformation under such loads on aerodynamic performance. Key limitations of the reduced order models used, namely fuselage and interference effects, are discussed. The reasons for the overall agreement between the two approaches are also outlined

    Flexible high aspect ratio wing: Low cost experimental model and computational framework

    Get PDF
    Aircraft concepts of tomorrow, such as high aspect ratio wing aircraft, are far more integrated between technical disciplines and thus require multidisciplinary design approaches. Design tools able to predict associated dynamics need to be developed if such wing concepts are to be matured for use on future transport aircraft. The Cranfield University Beam Reduction and Dynamic Scaling ( BeaRDS) Programme provides a framework that scales a conceptual full size aircraft to a cantilevered wing model of wind tunnel dimensions, such that there is similitude between the static and dynamic behaviour of the model and the full size aircraft. This process of aeroelastically scaled testing combines the technical disciplines of aerodynamics, flight mechanics and structural dynamics, to provide a means by which future concept aircraft can be de-risked and explored . Data acquisition from wind tunnel testing can then be used to validate fluid-structure interaction frameworks that model the aeroelastic effect on the flight dynamics of the aircraft. This paper provides an overview of the BeaRDS methodology, and focuses on the Phase I of the programme, being the development of a reduced Cranfield A-13 aircraft cantilevered wing, to mitigate risk associated with the manufacturing and instrumentation app roach. It is shown that a low cost acquisition system of commercial Inertial Measurement Units (IMUs) can measure the response of the wing within the desired frequency range. Issues associated with the Phase I testing are discussed, and methods are proposed for the Phase II programme that allow these problems to be resolved for a larger scale flexible wing with active control surfaces

    An orbital-free molecular dynamics study of melting in K_20, K_55, K_92, K_142, Rb_55 and Cs_55 clusters

    Full text link
    The melting-like transition in potasium clusters K_N, with N=20, 55, 92 and 142, is studied by using an orbital-free density-functional constant-energy molecular dynamics simulation method, and compared to previous theoretical results on the melting-like transition in sodium clusters of the same sizes. Melting in potasium and sodium clusters proceeds in a similar way: a surface melting stage develops upon heating before the homogeneous melting temperature is reached. Premelting effects are nevertheless more important and more easily established in potasium clusters, and the transition regions spread over temperature intervals which are wider than in the case of sodium. For all the sizes considered, the percentage melting temperature reduction when passing from Na to K clusters is substantially larger than in the bulk. Once those two materials have been compared for a number of different cluster sizes, we study the melting-like transition in Rb_55 and Cs_55 clusters and make a comparison with the melting behavior of Na_55 and K_55. As the atomic number increases, the height of the specific heat peaks decreases, their width increases, and the melting temperature decreases as in bulk melting, but in a more pronounced way.Comment: LaTeX file. 6 pages with 17 pictures. Final version with minor change

    Ab Initio Computer Simulations on Microclusters: Structures and Electronic Properties

    No full text

    Electronic and Atomic Structure, and Magnetism of Transition-Metal Clusters

    No full text

    Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles

    No full text
    corecore