3,400 research outputs found

    Spontaneous Symmetry Breaking for Scalar QED with Non-minimal Chern-Simons Coupling

    Get PDF
    We investigate the two-loop effective potential for both minimally and non-minimally coupled Maxwell-Chern-Simons theories. The non-minimal gauge interaction represents the magnetic moment interaction between a charged scalar and the electromagnetic field. In a previous paper we have shown that the two loop effective potential for this model is renormalizable with an appropriate choice of the non-minimal coupling constant. We carry out a detailed analysis of the spontaneous symmetry breaking induced by radiative corrections. As long as the renormalization point for all couplings is chosen to be the true minimum of the effective potential, both models predict the presence of spontaneous symmetry breaking. Two loop corrections are small compared to the one loop result, and thus the symmetry breaking is perturbatively stable.Comment: Revtex 25 pages, 9 figure

    Temperature dependent anisotropy of the penetration depth and coherence length in MgB$_2

    Full text link
    We report measurements of the temperature dependent anisotropies (γλ\gamma_\lambda and γξ\gamma_\xi) of both the London penetration depth λ\lambda and the upper critical field of MgB2_2. Data for γλ=λc/λa\gamma_\lambda=\lambda_c/\lambda_a was obtained from measurements of λa\lambda_{a} and λc\lambda_c on a single crystal sample using a tunnel diode oscillator technique. γξ=Hc2∥c/Hc2⊥c\gamma_\xi=H_{c2}^{\parallel c}/H_{c2}^{\bot c} was deduced from field dependent specific heat measurements on the same sample. γλ\gamma_\lambda and γξ\gamma_\xi have opposite temperature dependencies, but close to TcT_c tend to a common value (γλ≃γξ=1.75±0.05\gamma_\lambda\simeq \gamma_\xi=1.75\pm0.05). These results are in good agreement with theories accounting for the two gap nature of MgB2_2Comment: 4 pages with figures (New version

    Destruction of chain-superconductivity in YBa_2Cu_4O_8 in a weak magnetic field

    Full text link
    We report measurements of the temperature dependent components of the magnetic penetration depth {\lambda}(T) in single crystal samples of YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We observe a downturn in {\lambda}(T) at low temperatures for currents flowing along the b and c axes but not along the a axis. The downturn in {\lambda}_b is suppressed by a small dc field of ~0.25 T. This and the zero field anisotropy of {\lambda}(T) likely result from proximity induced superconducting on the CuO chains, however we also discuss the possibility that a significant part of the anisotropy might originate from the CuO2 planes.Comment: 5 page

    Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma

    Full text link
    In numerical simulations of nonabelian plasma instabilities in the hard-loop approximation, a turbulent spectrum has been observed that is characterized by a phase-space density of particles n(p)∼p−νn(p)\sim p^{-\nu} with exponent ν≃2\nu\simeq 2, which is larger than expected from relativistic 2↔22\leftrightarrow 2 scatterings. Using the approach of Zakharov, L'vov and Falkovich, we analyse possible Kolmogorov coefficients for relativistic (m≥4)(m \ge 4)-particle processes, which give at most ν=5/3\nu=5/3 perturbatively for an energy cascade. We discuss nonperturbative scenarios which lead to larger values. As an extreme limit we find the result ν=5\nu=5 generically in an inherently nonperturbative effective field theory situation, which coincides with results obtained by Berges et al.\ in large-NN scalar field theory. If we instead assume that scaling behavior is determined by Schwinger-Dyson resummations such that the different scaling of bare and dressed vertices matters, we find that intermediate values are possible. We present one simple scenario which would single out ν=2\nu=2.Comment: published versio

    Evidence for nodal superconductivity in LaFePO

    Full text link
    In several iron-arsenide superconductors there is strong evidence for a fully gapped superconducting state consistent with either a conventional s-wave symmetry or an unusual s±s_\pm state where there the gap changes sign between the electron and hole Fermi surface sheets. Here we report measurements of the penetration depth λ(T)\lambda(T) in very clean samples of the related iron-phosphide superconductor, LaFePO, at temperatures down to ∼\sim 100 mK. We find that λ(T)\lambda(T) varies almost perfectly linearly with TT strongly suggesting the presence of gap nodes in this compound. Taken together with other data, this suggests the gap function may not be generic to all pnictide superconductors

    Preferential attachment of communities: the same principle, but a higher level

    Get PDF
    The graph of communities is a network emerging above the level of individual nodes in the hierarchical organisation of a complex system. In this graph the nodes correspond to communities (highly interconnected subgraphs, also called modules or clusters), and the links refer to members shared by two communities. Our analysis indicates that the development of this modular structure is driven by preferential attachment, in complete analogy with the growth of the underlying network of nodes. We study how the links between communities are born in a growing co-authorship network, and introduce a simple model for the dynamics of overlapping communities.Comment: 7 pages, 3 figure

    Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor

    Full text link
    The transport of heat and charge in the overdoped cuprate superconductor Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal state, obtained by applying a magnetic field greater than the upper critical field, the Wiedemann-Franz law is verified to hold perfectly. In the superconducting state, a large residual linear term is observed in the thermal conductivity, in quantitative agreement with BCS theory for a d-wave superconductor. This is compelling evidence that the electrons in overdoped cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev. Lett. 89, 147003 (2002

    Energy Flow in Acoustic Black Holes

    Full text link
    We present the results of an analysis of superradiant energy flow due to scalar fields incident on an acoustic black hole. In addition to providing independent confirmation of the recent results in [5], we determine in detail the profile of energy flow everywhere outside the horizon. We confirm explicitly that in a suitable frame the energy flow is inward at the horizon and outward at infinity, as expected on physical grounds.Comment: 8 pages, 9 figures, Comments added to discussion of energy flow and introductory section abbreviate

    2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills

    Full text link
    We employ nPI effective action techniques to study N = 4 super Yang-Mills, and write down the 2PI effective action of the theory. We also supply the evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme clarified, references adde
    • …
    corecore