5 research outputs found

    β-Hydroxybutyrate improves β-cell mitochondrial function and survival

    No full text
    Pharmacological interventions aimed at improving outcomes in type 2 diabetes and achieving normoglycaemia, including insulin therapy, are increasingly common, despite the potential for substantial side effects. Carbohydrate-restricted diets that result in increased ketogenesis have effectively been used to improve insulin resistance, a fundamental feature of type 2 diabetes. In addition, limited evidence suggests that states of ketogenesis may also improve β-cell function in type 2 diabetics. Considering how little is known regarding the effects of ketones on β-cell function, we sought to determine the specific effects of β-Hydroxybutyrate (βHB) on pancreatic β-cell physiology and mitochondrial function. βHB treatment increased β-cell survival and proliferation, while also increasing mitochondrial mass, respiration and adenosine triphosphate (ATP) production. Despite these improvements, were unable to detect an increase in β-cell or islet insulin production and secretion. Collectively, these findings have two implications. Firstly, they indicate that β-cells have improved survival and proliferation in the midst of βHB, the circulating form of ketones. Secondly, insulin secretion does not appear to be directly related to apparent improvements in mitochondrial function and cellular proliferation

    β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle

    No full text
    The clinical benefit of ketosis has historically and almost exclusively centered on neurological conditions, lending insight into how ketones alter mitochondrial function in neurons. However, there is a gap in our understanding of how ketones influence mitochondria within skeletal muscle cells. The purpose of this study was to elucidate the specific effects of β-hydroxybutyrate (β-HB) on muscle cell mitochondrial physiology. In addition to increased cell viability, murine myotubes displayed beneficial mitochondrial changes evident in reduced H2O2 emission and less mitochondrial fission, which may be a result of a β-HB-induced reduction in ceramides. Furthermore, muscle from rats in sustained ketosis similarly produced less H2O2 despite an increase in mitochondrial respiration and no apparent change in mitochondrial quantity. In sum, these results indicate a general improvement in muscle cell mitochondrial function when β-HB is provided as a fuel
    corecore