7 research outputs found

    Dynamic procedure for daily PM56 ETo mapping conducive to site-specific irrigation recommendations in areas covered by agricultural weather networks.

    Full text link
    [EN] Modern agriculture is underpinned by actual meteorological data registered using automated meteorological stations forming networks specifically created for advising purposes. In many cases, those data used to be accessible online by means of APIs (Application Programming Interface). One of the most common cases is the irrigation-advice weather network implemented with the aim of obtaining ETo values to be used in irrigation recommendations. However, those punctual values of ETo scattered throughout the territory do not allow to produce specific irrigation recommendations for each farm. The only way of disposing site-specific values of ETo is by compiling maps that describe its spatial variation. With this objective, a new dynamic procedure based on an existing regression-based technique of interpolation was proposed. Using the meteorological data registered at the end of each day, maximum and minimum temperature, maximum and minimum relative humidity, wind velocity, and radiation maps were interpolated and then, an ETo map was derived. The proposed procedure demonstrated a special adaptation capacity to the synoptic pattern of each day using some geographical features or others, as appropriate to explain the spatial variability of the interpolated meteorological variable. In those months where radiation plays a key role in the ETo value (growing season), ETo maps obtained were especially fine-grained in areas with significant relief. This procedure improved other contrasted methodologies they were compared with. The impact of using the nearest-weather-station ETo vs interpolated value on a daily water needs was investigated and near 10% average value of error was encountered in the case study.This study has received funding from the eGROUNDWATER project (GA n. 1921) , part of the PRIMA program supported by the European Union 's Horizon 2020 research and innovation program, and the WATER4CAST project (PROMETEO/2021/074) , which is funded by the Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital de la Comunitat Valenciana.Meteorological data were provided by SIAR: " Sistema de Informacion Agroclimatica para el Regadio. Ministerio de Agricultura, Pesca y Alimentacion" . Special thanks to Carlos Garrido Garrido and Ivan Cilleros Fuentetaja for providing us an API-SIAR access. Thanks to Luis Bonet for giving us permission to use the picture of the IVIA-SIAR automated station.Garcia-Prats, A.; Carricondo-Antón, JM.; Jiménez Bello, MA.; Manzano Juarez, J.; López Pérez, E.; Pulido-Velazquez, M. (2023). Dynamic procedure for daily PM56 ETo mapping conducive to site-specific irrigation recommendations in areas covered by agricultural weather networks. Agricultural Water Management. 287:1-18. https://doi.org/10.1016/j.agwat.2023.10841511828

    Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain)

    Full text link
    [EN] During the last three decades, like many other Mediterranean states, Spain has intensively promoted the modernization of irrigation, focusing mainly on the introduction of pressurized irrigation systems. Following 30 years of investment, a shift in irrigation policies is needed to solve some of the deficiencies in this modernization process and to incorporate new measures to cope with upcoming challenges generated by international markets, climate change and other social and economic processes. This paper describes and analyses the results of participatory research carried out with the water user associations in the autonomous region of Valencia, in order to define post-modernization irrigation policies. A survey and 24 local workshops involving 304 water user associations were conducted during the irrigation season of 2018 in order to form an assessment of the sector and design new irrigation policies. The results show that after 30 years of important investment, the obsolescence of the infrastructure has become the current main priority, making farmers dependent on public subsidies. New necessities have also emerged, such as renewable energies and nonconventional water resources, which farmers consider indispensable in order to reduce operating costs and guarantee water supply.This work has been developed under the framework of the research agreement "Estudio para la modernizacion del regadio en la Comunidad Valenciana", between the Universitat Politecnica de Valencia and the Generalitat Valenciana, and conducted as part of the research project "Design and evaluation of strategies to adapt to global climate change in Mediterranean watersheds by using irrigation water intensively (ADAPTAMED)" (RTI2018-101483-B-I00), funded by the Ministerio de Economia y Competitividad (MINECO) of Spain and with EU FEDER funds.Sanchis Ibor, C.; Ortega-Reig, M.; Guillem-Garcia, A.; Carricondo, JM.; Manzano Juarez, J.; García Molla, M.; Royuela, A. (2021). Irrigation Post-Modernization. Farmers Envisioning Irrigation Policy in the Region of Valencia (Spain). Agriculture. 11(4):1-21. https://doi.org/10.3390/agriculture11040317S121114Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., & Scanlon, B. R. (2015). A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 19(3), 1521-1545. doi:10.5194/hess-19-1521-2015Projects in Irrigation and Drainage https://projects.worldbank.org/en/projects-operations/projects-list?sectorcode_exact=AIInternational Commission on Irrigation and Drainage (ICID), World Irrigated Area 2018 https://www.icid.org/world-irrigated-area.pdfBenouniche, M., Zwarteveen, M., & Kuper, M. (2014). BRICOLAGEAS INNOVATION: OPENING THE BLACK BOX OF DRIP IRRIGATION SYSTEMS. Irrigation and Drainage, 63(5), 651-658. doi:10.1002/ird.1854Van der Kooij, S., Zwarteveen, M., & Kuper, M. (2015). The material of the social: the mutual shaping of institutions by irrigation technology and society in Seguia Khrichfa, Morocco. International Journal of the Commons, 9(1), 129. doi:10.18352/ijc.539Ortega-Reig, M., Sanchis-Ibor, C., Palau-Salvador, G., García-Mollá, M., & Avellá-Reus, L. (2017). Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain. Agricultural Water Management, 187, 164-172. doi:10.1016/j.agwat.2017.03.009García-Mollá, M., Ortega-Reig, M., Boelens, R., & Sanchis-Ibor, C. (2020). Hybridizing the commons. Privatizing and outsourcing collective irrigation management after technological change in Spain. World Development, 132, 104983. doi:10.1016/j.worlddev.2020.104983Lecina, S., Isidoro, D., Playán, E., & Aragüés, R. (2010). Irrigation Modernization in Spain: Effects on Water Quantity and Quality—A Conceptual Approach. International Journal of Water Resources Development, 26(2), 265-282. doi:10.1080/07900621003655734Berbel, J., & Mateos, L. (2014). Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agricultural Systems, 128, 25-34. doi:10.1016/j.agsy.2014.04.002Berbel, J., Gutiérrez-Martín, C., Rodríguez-Díaz, J. A., Camacho, E., & Montesinos, P. (2014). Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study. Water Resources Management, 29(3), 663-678. doi:10.1007/s11269-014-0839-0Berbel, J., Gutiérrez-Martín, C., & Expósito, A. (2018). Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agricultural Water Management, 203, 423-429. doi:10.1016/j.agwat.2018.02.026Molle, F., & Tanouti, O. (2017). Squaring the circle: Agricultural intensification vs. water conservation in Morocco. Agricultural Water Management, 192, 170-179. doi:10.1016/j.agwat.2017.07.009Pérez-Blanco, C. D., Hrast-Essenfelder, A., & Perry, C. (2020). Irrigation Technology and Water Conservation: A Review of the Theory and Evidence. Review of Environmental Economics and Policy, 14(2), 216-239. doi:10.1093/reep/reaa004Rodríguez-Díaz, J. A., Pérez-Urrestarazu, L., Camacho-Poyato, E., & Montesinos, P. (2011). The paradox of irrigation scheme modernization: more efficient water use linked to higher energy demand. Spanish Journal of Agricultural Research, 9(4), 1000. doi:10.5424/sjar/20110904-492-10Rocamora, C., Vera, J., & Abadía, R. (2012). Strategy for Efficient Energy Management to solve energy problems in modernized irrigation: analysis of the Spanish case. Irrigation Science, 31(5), 1139-1158. doi:10.1007/s00271-012-0394-5Espinosa-Tasón, J., Berbel, J., & Gutiérrez-Martín, C. (2020). Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017. Agricultural Water Management, 233, 106073. doi:10.1016/j.agwat.2020.106073Lopez-Gunn, E., Zorrilla, P., Prieto, F., & Llamas, M. R. (2012). Lost in translation? Water efficiency in Spanish agriculture. Agricultural Water Management, 108, 83-95. doi:10.1016/j.agwat.2012.01.005Garb, Y., & Friedlander, L. (2014). From transfer to translation: Using systemic understandings of technology to understand drip irrigation uptake. Agricultural Systems, 128, 13-24. doi:10.1016/j.agsy.2014.04.003Venot, J.-P., Zwarteveen, M., Kuper, M., Boesveld, H., Bossenbroek, L., Kooij, S. V. D., … Verma, S. (2014). BEYOND THE PROMISES OF TECHNOLOGY: A REVIEW OF THE DISCOURSES AND ACTORS WHO MAKE DRIP IRRIGATION. Irrigation and Drainage, 63(2), 186-194. doi:10.1002/ird.1839Soto-García, M., Martínez-Alvarez, V., García-Bastida, P. A., Alcon, F., & Martin-Gorriz, B. (2013). Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain. Agricultural Water Management, 124, 11-19. doi:10.1016/j.agwat.2013.03.019Playán, E., Salvador, R., López, C., Lecina, S., Dechmi, F., & Zapata, N. (2014). Solid-Set Sprinkler Irrigation Controllers Driven by Simulation Models: Opportunities and Bottlenecks. Journal of Irrigation and Drainage Engineering, 140(1), 04013001. doi:10.1061/(asce)ir.1943-4774.0000653Tarjuelo, J. M., Rodriguez-Diaz, J. A., Abadía, R., Camacho, E., Rocamora, C., & Moreno, M. A. (2015). Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agricultural Water Management, 162, 67-77. doi:10.1016/j.agwat.2015.08.009Informe Del Sector Agrari Valencià 2019: València: Generalitat Valenciana 2021 http://www.agroambient.gva.es/va/informes-del-sector-agrario-valencianoPlan Hidrológico de la Cuenca Del Júcar 2015–2021 https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2015–2021-Plan-Hidrologico-cuenca.aspxPlan Hidrológico de la Demarcación Del Segura 2015–2021 https://www.chsegura.es/es/cuenca/planificacion/planificacion-2015–2021/plan-hidrologico-2015–2021/index.htmlMaster Plan for the Modernization of Irrigation in the Valencia Region, DECRETO 13/1995 de 10 de Enero, Del Gobierno Valenciano, Por El Que Se Aprueba El Plan Director de Modernización Del Regadío de la Comunidad http://www.dogv.gva.es/portal/ficha_disposicion_pc.jsp?sig=0185/1995&L=1Scheierling, S. M., Young, R. A., & Cardon, G. E. (2006). Public subsidies for water-conserving irrigation investments: Hydrologic, agronomic, and economic assessment. Water Resources Research, 42(3). doi:10.1029/2004wr003809Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215-18220. doi:10.1073/pnas.0805554105Pfeiffer, L., & Lin, C.-Y. C. (2014). Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Journal of Environmental Economics and Management, 67(2), 189-208. doi:10.1016/j.jeem.2013.12.002Dagnino, M., & Ward, F. A. (2012). Economics of Agricultural Water Conservation: Empirical Analysis and Policy Implications. International Journal of Water Resources Development, 28(4), 577-600. doi:10.1080/07900627.2012.665801A Blueprint to Safeguard Europe’s Water Resources, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions 2012 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52012DC0673&from=ENSanchis-Ibor, C., García-Mollá, M., & Avellà-Reus, L. (2016). Effects of drip irrigation promotion policies on water use and irrigation costs in Valencia, Spain. Water Policy, 19(1), 165-180. doi:10.2166/wp.2016.025LIU, B., MEI, X., LI, Y., & YANG, Y. (2007). The Connotation and Extension of Agricultural Water Resources Security. Agricultural Sciences in China, 6(1), 11-16. doi:10.1016/s1671-2927(07)60011-xMalekian, A., Hayati, D., & Aarts, N. (2017). Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms. Journal of Hydrology, 544, 224-232. doi:10.1016/j.jhydrol.2016.11.026Swyngedouw, E. (2013). Into the Sea: Desalination as Hydro-Social Fix in Spain. Annals of the Association of American Geographers, 103(2), 261-270. doi:10.1080/00045608.2013.754688Swyngedouw, E., & Williams, J. (2016). From Spain’s hydro-deadlock to the desalination fix. Water International, 41(1), 54-73. doi:10.1080/02508060.2016.1107705Análisis y Evaluación de Las Relaciones Entre El Agua y la Energía, Papeles de Agua Virtual 6, Madrid: Fundación Botín https://www.fundacionbotin.org/89dguuytdfr276ed_uploads/Observatorio%20Tendencias/PUBLICACIONES/MONOGRAFIAS/PAV/PAV6.pdfHardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain’s Water-Energy Nexus. International Journal of Water Resources Development, 28(1), 151-170. doi:10.1080/07900627.2012.642240Mayor, B., López-Gunn, E., Villarroya, F. I., & Montero, E. (2015). Application of a water–energy–food nexus framework for the Duero river basin in Spain. Water International, 40(5-6), 791-808. doi:10.1080/02508060.2015.1071512La Subida de Las Tarifas Eléctricas Ahoga a Los Regantes Españoles Iagua https://www.iagua.es/noticias/tarifas/14/02/11/la-factura-electrica-de-los-regantes-se-ha-incrementado-en-mas-de-un-80-desde-2008-45084González-Pavón, C., Arviza-Valverde, J., Balbastre-Peralta, I., Carot Sierra, J. M., & Palau-Salvador, G. (2020). Are Water User Associations Prepared for a Second-Generation Modernization? The Case of the Valencian Community (Spain). Water, 12(8), 2136. doi:10.3390/w12082136Agrawal, A. (2001). Common Property Institutions and Sustainable Governance of Resources. World Development, 29(10), 1649-1672. doi:10.1016/s0305-750x(01)00063-8Wheeler, S. A., Carmody, E., Grafton, R. Q., Kingsford, R. T., & Zuo, A. (2020). The rebound effect on water extraction from subsidising irrigation infrastructure in Australia. Resources, Conservation and Recycling, 159, 104755. doi:10.1016/j.resconrec.2020.104755Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., … Allen, R. G. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748-750. doi:10.1126/science.aat931

    Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems

    Full text link
    This is an Author's Accepted Manuscript of an article published in J. M. Carricondo, J. V. Oliver-Villanueva, J. V. Turégano, J. A. González & J. Mengual (2021) Use of Phragmites australis for controlling phosphorus contamination in anthropogenic wetland ecosystems, Environmental Technology, 42:19, 3055-3064, DOI: 10.1080/09593330.2020.1720311 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/09593330.2020.1720311[EN] Continuous phosphorus discharges in bodies of water, generated by human activities, such as agriculture, domestic effluences or wastewater from industrial processes, produce contaminated water and eutrophication. For this reason, efficient and low-cost systems that can remove phosphorus from contaminated water are necessary. In addition, it is important to generate renewable energy such as the energy produced in biomass power plants, taking advantage of the available biomass waste in each place. When producing this renewable energy, the resulting ash is a residue that can be used for phosphorus removal by adsorption processes. Moreover, according to the concept of the circular economy, the ash waste generated in this bio energy process should be reduced as much as possible. One of the advantages of this research being that surplus phosphorus-laden ash can be reused as fertilizer in agricultural fields. Considering this, the efficiency of reed ash (RA) (Phragmites australis) has been analysed in batch experiments, as well as the effect of several parameters on the removal of phosphate, such as contact time, phosphate-ash ratio, ash dose and temperature. Significant results obtained show that RA can be used to improve water quality.Carricondo, JM.; Oliver Villanueva, JV.; Turegano Pastor, JV.; González Romero, JA.; Mengual Cuquerella, J. (2021). Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems. Environmental Technology. 42(19):3055-3064. https://doi.org/10.1080/09593330.2020.1720311S305530644219Rodrigo, M. A., Valentín, A., Claros, J., Moreno, L., Segura, M., Lassalle, M., & Vera, P. (2018). Assessing the effect of emergent vegetation in a surface-flow constructed wetland on eutrophication reversion and biodiversity enhancement. Ecological Engineering, 113, 74-87. doi:10.1016/j.ecoleng.2017.11.021Ahmad, S. S., Reshi, Z. A., Shah, M. A., Rashid, I., Ara, R., & Andrabi, S. M. A. (2014). Phytoremediation Potential ofPhragmites australisin Hokersar Wetland - A Ramsar Site of Kashmir Himalaya. International Journal of Phytoremediation, 16(12), 1183-1191. doi:10.1080/15226514.2013.821449Chandra, R., & Yadav, S. (2011). Phytoremediation of CD, CR, CU, MN, FE, NI, PB and ZN from Aqueous Solution UsingPhragmites Cummunis, Typha AngustifoliaandCyperus Esculentus. International Journal of Phytoremediation, 13(6), 580-591. doi:10.1080/15226514.2010.495258Brix, H., Schierup, H.-H., & Arias, C. A. (2007). Twenty years experience with constructed wetland systems in Denmark – what did we learn? Water Science and Technology, 56(3), 63-68. doi:10.2166/wst.2007.522Vybernaite-Lubiene, I., Zilius, M., Giordani, G., Petkuviene, J., Vaiciute, D., Bukaveckas, P. A., & Bartoli, M. (2017). Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuarine, Coastal and Shelf Science, 194, 217-228. doi:10.1016/j.ecss.2017.06.020Del Barrio Fernández, P., Gómez, A. G., Alba, J. G., Díaz, C. Á., & Revilla Cortezón, J. A. (2012). A model for describing the eutrophication in a heavily regulated coastal lagoon. Application to the Albufera of Valencia (Spain). Journal of Environmental Management, 112, 340-352. doi:10.1016/j.jenvman.2012.08.019Uddin, M. N., & Robinson, R. W. (2018). Can nutrient enrichment influence the invasion of Phragmites australis? Science of The Total Environment, 613-614, 1449-1459. doi:10.1016/j.scitotenv.2017.06.131Ailstock, M. S., Norman, C. M., & Bushmann, P. J. (2001). Common ReedPhragmites australis: Control and Effects Upon Biodiversity in Freshwater Nontidal Wetlands. Restoration Ecology, 9(1), 49-59. doi:10.1046/j.1526-100x.2001.009001049.xColeman, H. M., & Levine, J. M. (2006). Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biological Invasions, 9(1), 65-71. doi:10.1007/s10530-006-9008-6Farnsworth, E. J., & Meyerson, L. A. (2003). Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands, 23(4), 750-762. doi:10.1672/0277-5212(2003)023[0750:ceofwp]2.0.co;2Holdredge, C., & Bertness, M. D. (2010). Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biological Invasions, 13(2), 423-433. doi:10.1007/s10530-010-9836-2Verhoeven, J. T. A., & Setter, T. L. (2009). Agricultural use of wetlands: opportunities and limitations. Annals of Botany, 105(1), 155-163. doi:10.1093/aob/mcp172Pinto, E., Almeida, A., & Ferreira, I. M. P. L. V. O. (2016). Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. Journal of Food Composition and Analysis, 48, 81-87. doi:10.1016/j.jfca.2016.02.008Li, M., Liu, J., Xu, Y., & Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews, 24(3), 319-332. doi:10.1139/er-2015-0080Correll, D. L. (1998). The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. Journal of Environmental Quality, 27(2), 261-266. doi:10.2134/jeq1998.00472425002700020004xSharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniel, T. C., & Reddy, K. R. (1994). Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. Journal of Environmental Quality, 23(3), 437-451. doi:10.2134/jeq1994.00472425002300030006xMaiga Y, von Sperling M, Mihelcic J. Constructed Wetlands. In: Rose JB and Jiménez-Cisneros B (eds) Global Water Pathogen Project. http://www.waterpathogens.org (Haas C, Mihelcic JR and Verbyla ME) (eds) Part 4 Management Of Risk from Excreta and Wastewater). http://www.waterpathogen 2017.Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chemical Engineering Journal, 290, 232-242. doi:10.1016/j.cej.2015.12.108Zhang, Y., Song, C., Ji, L., Liu, Y., Xiao, J., Cao, X., & Zhou, Y. (2018). Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Science of The Total Environment, 627, 1294-1302. doi:10.1016/j.scitotenv.2018.01.327Rai, P. K. (2008). Heavy Metal Pollution in Aquatic Ecosystems and its Phytoremediation using Wetland Plants: An ecosustainable approach. International Journal of Phytoremediation, 10(2), 133-160. doi:10.1080/15226510801913918Meuleman, A. F. M., Beekman, J. P., & Verhoeven, J. T. A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wasterwater application. Wetlands, 22(4), 712-721. doi:10.1672/0277-5212(2002)022[0712:nranue]2.0.co;2Važić, T., Svirčev, Z., Dulić, T., Krstić, K., & Obreht, I. (2015). Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renewable and Sustainable Energy Reviews, 48, 670-680. doi:10.1016/j.rser.2015.04.034Matsumura, Y., Minowa, T., & Yamamoto, H. (2005). Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass and Bioenergy, 29(5), 347-354. doi:10.1016/j.biombioe.2004.06.015Kumari, M., & Tripathi, B. D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80-86. doi:10.1016/j.ecoenv.2014.10.034Boluda, R., Andreu, V., Gilabert, M. A., & Sobrino, P. (1993). Relation between reflectance of rice crop and indices of pollution by heavy metals in soils of albufera natural park (Valencia, Spain). Soil Technology, 6(4), 351-363. doi:10.1016/0933-3630(93)90025-aYadav, D., Kapur, M., Kumar, P., & Mondal, M. K. (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Safety and Environmental Protection, 94, 402-409. doi:10.1016/j.psep.2014.09.005UGURLU, A. (1998). Phosphorus removal by fly ash. Environment International, 24(8), 911-918. doi:10.1016/s0160-4120(98)00079-8Abbas, M. N. (2014). Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalination and Water Treatment, 55(4), 970-977. doi:10.1080/19443994.2014.922494El-Sobky, E.-S. E. A. (2017). Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat ( Triticum aestivum L.). Annals of Agricultural Sciences, 62(1), 113-120. doi:10.1016/j.aoas.2017.05.007Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., & Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production, 95, 45-54. doi:10.1016/j.jclepro.2015.02.051Mor, S., Chhoden, K., & Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production, 129, 673-680. doi:10.1016/j.jclepro.2016.03.088Seliem, M. K., Komarneni, S., & Abu Khadra, M. R. (2016). Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous and Mesoporous Materials, 224, 51-57. doi:10.1016/j.micromeso.2015.11.011Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327-363. doi:10.1016/j.pecs.2009.11.003Langmuir, I. (1916). THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. Journal of the American Chemical Society, 38(11), 2221-2295. doi:10.1021/ja02268a002Chen, Y., Wang, F., Duan, L., Yang, H., & Gao, J. (2016). Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. Journal of Molecular Liquids, 222, 487-494. doi:10.1016/j.molliq.2016.07.090Ma, Z., Li, Q., Yue, Q., Gao, B., Li, W., Xu, X., & Zhong, Q. (2011). Adsorption removal of ammonium and phosphate from water by fertilizer controlled release agent prepared from wheat straw. Chemical Engineering Journal, 171(3), 1209-1217. doi:10.1016/j.cej.2011.05.027Vassileva, P., & Voikova, D. (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. Journal of Hazardous Materials, 170(2-3), 948-953. doi:10.1016/j.jhazmat.2009.05.062SHI, Z., LIU, F., & YAO, S. (2011). Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide. New Carbon Materials, 26(4), 299-306. doi:10.1016/s1872-5805(11)60083-8Wu, Y., Li, X., Yang, Q., Wang, D., Xu, Q., Yao, F., … Huang, X. (2019). Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. Journal of Environmental Management, 231, 370-379. doi:10.1016/j.jenvman.2018.10.059Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70-89. doi:10.1016/j.ecoleng.2009.08.003Xia, P., Wang, X., Wang, X., Song, J., Wang, H., Zhang, J., & Zhao, J. (2016). Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO⿿loaded diatomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 220-227. doi:10.1016/j.colsurfa.2016.05.101Wong, A., Navarro, E. A., & Abril, A. J. (2013). Microalgal oil production for use in rice farms in Albufera (València) region. International Journal of Green Economics, 7(2), 181. doi:10.1504/ijge.2013.057437Delivand, M. K., Barz, M., & Gheewala, S. H. (2011). Logistics cost analysis of rice straw for biomass power generation in Thailand. Energy, 36(3), 1435-1441. doi:10.1016/j.energy.2011.01.026Schiemenz, K., & Eichler-Löbermann, B. (2010). Biomass ashes and their phosphorus fertilizing effect on different crops. Nutrient Cycling in Agroecosystems, 87(3), 471-482. doi:10.1007/s10705-010-9353-9Ahmed, M. J. (2017). Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecological Engineering, 102, 262-269. doi:10.1016/j.ecoleng.2017.01.04

    Predicción del volumen bombeado semanalmente con diferente número de bombas en una estación con energía fotovoltaica. Póster

    Get PDF
    La metodología clásica para el dimensionamiento de instalaciones de riego fotovoltaico no optimiza el número de bombas a utilizar. Para determinar el número de bombas se debe estudiar el mayor aprovechamiento de la irradiancia solar disponiendo varias bombas funcionando en paralelo y determinando a futuro los parámetros de temperatura (T, oC) e irradiancia (Irrad, Wm-2), los cuales son utilizados para el cálculo de la potencia neta del generador (Pnet, W) y con ello el poder obtener una predicción del volumen que se puede bombear a una semana vista. A través de la red de estaciones meteorológicas del Instituto Valenciano de Investigaciones Agrarias (IVIA) (http://riegos.ivia.es/) se han obtenido los datos meteorológicos de la zona de estudio. El objetivo es analizar en qué medida se puede aumentar el volumen bombeado (VB, m3h-1) al incrementar el número de bombas instaladas en paralelo y la precisión de la estimación del VB semanalmente mediante servicios climáticos o mediante datos históricos. Este estudio se ha realizado en un bombeo del Sector 4 del Canal Júcar-Turia que abastece una superficie de 42,21 ha, en su mayoría cítricos. Se propone un modelo basado en la estimación de los VB semanales mediante predicciones meteorológicas, estimando los parámetros de T y Irrad para calcular la Potencia Neta Generada por día y hora (PnetD,h, W). La T y Irrad se obtienen mediante datos procedentes del servicio climático Global Forecast System (GFS) (www.nco.ncep.noaa.gov) de la National Centers for Environmental Prediction (NCEP), y mediante datos históricos. Una vez determinada PnetD,h, se calcula la potencia requerida (PbD,h, W) por día y hora para los diferentes grupos de bombas funcionando en paralelo (de 1 a 8 bombas). Se determina las horas de potencia disponible (HPDD,h, h) donde PnetD,h> PbD,h. Las HPDD,h de cada bomba para cada una de las 8 hipótesis multiplicadas por el caudal (Q, m3h-1) de cada bomba determina el VB. Al aumentar el número de bombas en paralelo aumentan los VB anualmente respecto de la metodología clásica de instalar 1 bomba, esto es debido, al mayor aprovechamiento de la Irrad. En el caso estudiado, instalar 5 bombas en paralelo de idénticas características en lugar de una única bomba, permitiría aumentar casi el 27 % del VB sin necesidad de modificar el generador fotovoltaico. También, los resultados demuestran que los datos del servicio climático GFS permiten mejorar la estimación del VB, a una semana vista, en comparación con el uso de datos históricos de media en un 32.2%

    Evaluación del uso de predicciones climáticas para la operación de bombeos mediante energía fotovoltaica de inyección directa

    Get PDF
    Este trabajo presenta una propuesta donde se reduce la incertidumbre en el riego fotovoltaico (FV) directo de oportunidad mediante predicciones meteorológicas (PM), pudiendo estimar con una semana de ventana temporal (VT) la irradiancia (Wm-2), la temperatura (oC), la velocidad del viento (ms 1) y la humedad (%) y con ello la Potencia Neta generada por día y hora (PnetD,h, W) y la evapotranspiración de referencia (ETo). Las PM son corregidas con un filtro del Kalman para el cálculo de las horas de potencia disponible (donde PnetD,h>Potencia requerida (PbD,h)) y de las necesidades de riego (Nr) y se compara frente a la forma tradicional de operar con los datos históricos y reemplazando la ETo sucedida en un periodo temporal. Además, se ha incorporado un modelo suelo-planta-agua el cual permite conocer el estado de humedad del suelo para establecer la programación del riego dentro de unos umbrales de humedad que no perjudiquen al cultivo. El objetivo es evaluar, en instalaciones con suministro energético FV, una metodología de programación de riego que utiliza las PM en lugar de los datos históricos manteniendo la humedad del suelo por encima de una humedad mínima. Se aplica en un caso real de estudio de la red de riego Camí Albalat, compuesta por 4 sectores y es gestionada por la comunidad de regantes de Massalet, próximo al término municipal de Carlet (Valencia), en el este de España. El uso de las PM a 7 días permite estimar con mayor precisión la PnetD,h y las Necesidades de riego (Nr) de los cultivos, pudiendo programar con antelación el funcionamiento de la instalación. Para el caso de estudio, el error relativo diario cometido para la época de mayores Nr (1 de abril a 30 de septiembre) de la estimación de la Pnet y de la ETo ha sido para las PM de un 26,3 % y un 6,3 % respectivamente, frente a un error utilizando los datos históricos del 50 % en la Pnet y del 15,2 % para la ETo. La humedad en el sector de máximos requerimientos de Pb no suele alcanzar la humedad mínima establecida (es el 25% menos de la Capacidad de Campo), esto es debido a que es el sector que aprovecha primero las horas de energía disponible. En contraposición está el sector de mínimo requerimiento de Pb que sí alcanza la humedad mínima establecida debido a que es el último sector en regarse a lo largo de la semana y por ello este sector es el que más energía eléctrica requiere. Con esto, el uso de PM ha permitido mejorar el consumo de energía FV de un 68,7 % a un 79,3 % y pasar del uso de energía disponible de un 11.64 % a un 13.37 % para el caso de estudio. No obstante, toda predicción está sometida a una incertidumbre y en caso de que no se cumpla se necesita una fuente de energía adicional

    Optimización de sistemas de bombeo fotovoltaico a depósitos con criterio técnico-económico

    Get PDF
    Para el cálculo de instalaciones donde hay bombeos de agua entre dos depósitos se suele diseñar las instalaciones de bombeo fotovoltaico (FV) siguiendo las pautas de instalaciones tradicionales. Se calcula el punto de funcionamiento y se selecciona una bomba que su curva (Hm-Q) sea lo más próxima al punto de funcionamiento. El problema de esta metodología es que parte de la energía solar del día se desperdicia y podría ser utilizada para el bombeo de agua. Por ello es importante la selección del tipo y número de bombas que pueden trabajar en paralelo. Este trabajo tiene como objetivo principal desarrollar una metodología para la optimización del número de bombas que pueden trabajar en paralelo y del tamaño del generador en instalaciones de riego FV a balsas. El caso de estudio consiste en un bombeo entre dos depósitos, donde él de mayor cota abastece por gravedad una superficie de riego de 42.21 ha, en la comunidad de regantes Sector 4, próximo al municipio de Picassent perteneciente a la Comunidad Valenciana situada en el Este de España. La metodología empleada se basa en el diseño de la instalación FV (Potencia pico (Pp, W)) y del equipo de bombeo mediante la metodología estándar. Se realiza un planteamiento de las hipótesis de bombeo con diferente número de bombas funcionando en paralelo (BFP) (de 1 a 8 bombas) donde la suma de caudales de todas las BFP de las diferentes hipótesis será igual al caudal de la hipótesis de 1 bomba. El volumen bombeado anual (VBA, m3año-1) se calcula determinando las horas de potencia disponible (HPD, h) para cada hipótesis (donde Potencia neta (Pnet, W)>Potencia requerida (Pb, W)) para todos los días del año para conocer la variación del VBA. Seguidamente, se utilizan distintas hipótesis de factor potencia (FP) (Cociente entre Pp y Pb) con el fin de estudiar el mínimo número de placas solares requeridas. Por último, se selecciona el número de bombas por criterio económico. Como principales resultados se obtiene un mayor aprovechamiento de la irradiancia, para la hipótesis con 1 bomba la potencia mínima requerida para que arranque la misma es de 24,4 kW, lo que equivale a un umbral de irradiancia de 336,2 Wm-2 para el mes más desfavorable. Sin embargo, para que comience el bombeo con la hipótesis de 5 BFP, solo se requiere de 4,9 kW, siendo el umbral de irradiancia, para el mes más desfavorable es de 65,2 Wm-2. Al aumentar el número de bombas se aumenta el VBA hasta casi un 27%, y viendo los incrementos de bombeo a lo largo de este año en relación con las necesidades de volumen a bombear se determina que para el número óptimo de bombas que sería 5, en este caso de estudio, el FP se disminuye en un 50,7%. La función económica nos indica el número de BFP a seleccionar, siendo la hipótesis de 5 bombas la que menor coste tiene

    Consensus-based management protocol (CREVICE protocol) for the treatment of severe traumatic brain injury based on imaging and clinical examination for use when intracranial pressure monitoring is not employed

    No full text
    Globally, intracranial pressure (ICP) monitoring use in severe traumatic brain injury (sTBI) is inconsistent and susceptible to resource limitations and clinical philosophies. For situations without monitoring, there is no published comprehensive management algorithm specific to identifying and treating suspected intracranial hypertension (SICH) outside of the one ad hoc Imaging and Clinical Examination (ICE) protocol in the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST:TRIP) trial. As part of an ongoing National Institutes of Health (NIH)-supported project, a consensus conference involving 43 experienced Latin American Intensivists and Neurosurgeons who routinely care for sTBI patients without ICP monitoring, refined, revised, and augmented the original BEST:TRIP algorithm. Based on BEST:TRIP trial data and pre-meeting polling, 11 issues were targeted for development. We used Delphi-based methodology to codify individual statements and the final algorithm, using a group agreement threshold of 80%. The resulting CREVICE (Consensus REVised ICE) algorithm defines SICH and addresses both general management and specific treatment. SICH treatment modalities are organized into tiers to guide treatment escalation and tapering. Treatment schedules were developed to facilitate targeted management of disease severity. A decision-support model, based on the group's combined practices, is provided to guide this process. This algorithm provides the first comprehensive management algorithm for treating sTBI patients when ICP monitoring is not available. It is intended to provide a framework to guide clinical care and direct future research toward sTBI management. Because of the dearth of relevant literature, it is explicitly consensus based, and is provided solely as a resource (a “consensus-based curbside consult”) to assist in treating sTBI in general intensive care units in resource-limited environments
    corecore