18 research outputs found

    A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping

    Get PDF
    The exploitation of Si nanostructures for electronic and optoelectronic devices depends on their electronic doping. We investigate a methodology for As doping of Si nanostructures taking advantages of ion beam implantation and nanosecond laser irradiation melting dynamics. We illustrate the behaviour of As when it is confined, by the implantation technique, in a SiO2/Si/SiO2multilayer and its spatial redistribution after annealing processes. As accumulation at the Si/SiO2interfaces was observed by Rutherford backscattering spectrometry in agreement with a model that assumes a traps distribution in the Si in the first 2-3 nm above the SiO2/Si interfaces. A concentration of 1014 traps/cm2has been evaluated. This result opens perspectives for As doping of Si nanoclusters embedded in SiO2since a Si nanocluster of radius 1 nm embedded in SiO2should trap 13 As atoms at the interface. In order to promote the As incorporation in the nanoclusters for an effective doping, an approach based on ion implantation and nanosecond laser irradiation was investigated. Si nanoclusters were produced in SiO2layer. After As ion implantation and nanosecond laser irradiation, spectroscopic ellipsometry measurements show nanoclusters optical properties consistent with their effective doping

    Infrared photovoltaic detector based on p-GeTe/n-Si heterojunction

    Get PDF
    GeTe is an important narrow bandgap semiconductor material and has found application in the fields of phase change storage as well as spintronics devices. However, it has not been studied for application in the field of infrared photovoltaic detectors working at room temperature. Herein, GeTe nanofilms were grown by magnetron sputtering technique and characterized to investigate its physical, electrical, and optical properties. A high-performance infrared photovoltaic detector based on GeTe/Si heterojunction with the detectivity of 8 × 1011 Jones at 850 nm light irradiation at room temperature was demonstrated

    Role of the strain in the epitaxial regrowth rate of heavily doped amorphous Si films

    No full text
    Solid phase epitaxial regrowth (SPER) of p -doped preamorphized Si was studied by time resolved reflectivity. Strain and dopant concentration were opportunely varied by implanting neutral (Ge) and isovalent (B, Ga) impurities in order to disentangle the two different effects on SPER. Larger SPER rate variations occurred in strained doped Si with respect to undoped samples. The generalized Fermi level shifting model was implemented to include the role of the strain and to fit the experimental data over a large range of temperature for p - and n -type doping. We introduced a charged defect, whose energy level is independent of the dopant species. © 2008 American Institute of Physics

    High-level incorporation of antimony in germanium by laser annealing

    No full text
    In this work we investigate pulse laser annealing as an alternative approach to reach high-level incorporation of Sb in substitutional location in crystalline germanium. Laser irradiation is demonstrated to recover also those structural defects, like honeycomb structures, that form during high-fluence heavy-ion implantations in Ge and that cannot be eliminated by conventional thermal treatments. Indeed, concentrations of substitutional Sb higher than 1 71021\u2002at./cm3 have been obtained, well above the solid solubility of Sb in Ge. The strain induced on the Ge host lattice is also investigated, evidencing that the obtained Sb doped Ge layer is pseudomorphic to the Ge substrate while positively strained by the substitutional Sb atoms present within the Ge matrix. The kinetics of this Sb-rich Ge alloy phase is finally investigated, showing that most of Sb goes out of lattice with increasing the annealing temperature up to 488\u2009\ub0C, leading to a decrease in the related lattice deformation. These results are very relevant for the future high-mobility channel technology

    Reversal of Ketosis in Type 1 Diabetes Is Not Adversely Affected by SGLT2 Inhibitor Therapy

    No full text
    We have shown that "euglycemic DKA" in patients with type 1 diabetes receiving a sodium-glucose cotransporter 2-inhibitor (SGLT2i) is due to normal increases in rates of ketogenesis but blunted increases in plasma glucose levels. In this analysis, we assessed whether rescue treatment of early ketoacidosis with insulin is altered by SGLT2i use

    Effect of Pramlintide on Prandial Glycemic Excursions During Closed-Loop Control in Adolescents and Young Adults With Type 1 Diabetes

    Get PDF
    ObjectiveEven under closed-loop (CL) conditions, meal-related blood glucose (BG) excursions frequently exceed target levels as a result of delays in absorption of insulin from the subcutaneous site of infusion. We hypothesized that delaying gastric emptying with preprandial injections of pramlintide would improve postprandial glycemia by allowing a better match between carbohydrate and insulin absorptions.Research design and methodsEight subjects (4 female; age, 15-28 years; A1C, 7.5 ± 0.7%) were studied for 48 h on a CL insulin-delivery system with a proportional integral derivative algorithm with insulin feedback: 24 h on CL control alone (CL) and 24 h on CL control plus 30-μg premeal injections of pramlintide (CLP). Target glucose was set at 120 mg/dL; timing and contents of meals were identical on both study days. No premeal manual boluses were given. Differences in reference BG excursions, defined as the incremental glucose rise from premeal to peak, were compared between conditions for each meal.ResultsCLP was associated with overall delayed time to peak BG (2.5 ± 0.9 vs. 1.5 ± 0.5 h; P < 0.0001) and reduced magnitude of glycemic excursion (88 ± 42 vs. 113 ± 32 mg/dL; P = 0.006) compared with CL alone. Pramlintide effects on glycemic excursions were particularly evident at lunch and dinner, in association with higher premeal insulin concentrations at those mealtimes.ConclusionsPramlintide delayed the time to peak postprandial BG and reduced the magnitude of prandial BG excursions. Beneficial effects of pramlintide on CL may in part be related to higher premeal insulin levels at lunch and dinner compared with breakfast

    Safety and Performance of the Omnipod Hybrid Closed-Loop System in Adults, Adolescents, and Children with Type 1 Diabetes over 5 Days under Free-Living Conditions

    No full text
    Background: The objective of this study was to assess the safety and performance of the Omnipod\uae personalized model predictive control (MPC) algorithm in adults, adolescents, and children aged 656 years with type 1 diabetes (T1D) under free-living conditions using an investigational device. Materials and Methods: A 96-h hybrid closed-loop (HCL) study was conducted in a supervised hotel/rental home setting following a 7-day outpatient standard therapy (ST) phase. Eligible participants were aged 6-65 years with A1C <10.0% using insulin pump therapy or multiple daily injections. Meals during HCL were unrestricted, with boluses administered per usual routine. There was daily physical activity. The primary endpoints were percentage of time with sensor glucose <70 and 65250 mg/dL. Results: Participants were 11 adults, 10 adolescents, and 15 children aged (mean \ub1 standard deviation) 28.8 \ub1 7.9, 14.3 \ub1 1.3, and 9.9 \ub1 1.0 years, respectively. Percentage time 65250 mg/dL during HCL was 4.5% \ub1 4.2%, 3.5% \ub1 5.0%, and 8.6% \ub1 8.8% per respective age group, a 1.6-, 3.4-, and 2.0-fold reduction compared to ST (P = 0.1, P = 0.02, and P = 0.03). Percentage time <70 mg/dL during HCL was 1.9% \ub1 1.3%, 2.5% \ub1 2.0%, and 2.2% \ub1 1.9%, a statistically significant decrease in adults when compared to ST (P = 0.005, P = 0.3, and P = 0.3). Percentage time 70-180 mg/dL increased during HCL compared to ST, reaching significance for adolescents and children: HCL 73.7% \ub1 7.5% vs. ST 68.0% \ub1 15.6% for adults (P = 0.08), HCL 79.0% \ub1 12.6% vs. ST 60.6% \ub1 13.4% for adolescents (P = 0.01), and HCL 69.2% \ub1 13.5% vs. ST 54.9% \ub1 12.9% for children (P = 0.003). Conclusions: The Omnipod personalized MPC algorithm was safe and performed well over 5 days and 4 nights of use by a cohort of participants ranging from youth aged 656 years to adults with T1D under supervised free-living conditions with challenges, including daily physical activity and unrestricted meals
    corecore