42 research outputs found
Sonication-Assisted Synthesis of β-Mercuric Sulfide Nanoparticles
The nanoscale semiconductor β‐mercuric sulphide (HgS) has promising applications in electronic and optical fields. Continued development of synthesis methods is needed to expand approaches that produce uniform particles, while avoiding reagents of high toxicity and ecological impact. A solvent‐based approach was developed using mercuric chloride and elemental sulphur as the mercury and chalcogenide sources. Ethanol was used as the solvent and sodium hydroxide as the hydrolysis reagent. Use of mild sonication resulted in smaller particles (average 11nm diameter) than without sonication treatment (average 17nm diameter) and continuous nitrogen purging reduced the surface oxygen content of the particles from approximately 25% to 6%. Particle characterization methods included TEM, XRD, XPS, UV‐visible absorbance spectroscopy and DLS. The nanoparticles were typically spheres of 10‐15nm in diameter. Aggregates formed in aqueous solutions tended to be in the range of 100nm or more. The overall process can be performed simply at room temperature and is comparatively free of toxic chemical hazards. The process does not include surfactants or other stabilizers that could potentially contaminate the nanocrystals. In principle, the method could be applied to synthesis of other metal chalcogenide nanoparticles
Relationships Between Metal Contamination in Wadable Streams in South Carolina and Land Use Charateristics
2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio
Ozone exposure is associated with acute changes in inflammation, fibrinolysis, and endothelial cell function in coronary artery disease patients
Air pollution is a major risk factor for cardiovascular disease, of which ozone is a major contributor. Several studies have found associations between ozone and cardiovascular morbidity, but the results have been inconclusive. We investigated associations between ozone and changes across biological pathways associated with cardiovascular disease
Recommended from our members
Risk Prediction for Clonal Cytopenia: Multicenter Real-World Evidence.
Clonal cytopenia of undetermined significance (CCUS) represents a distinct disease entity characterized by myeloid-related somatic mutations with a variant allele fraction of ≥2% in individuals with unexplained cytopenia(s) but without a myeloid neoplasm (MN). Notably, CCUS carries a risk of progressing to MN, particularly in cases featuring high-risk mutations. Understanding CCUS requires dedicated studies to elucidate its risk factors and natural history. Our analysis of 357 CCUS patients investigated the interplay between clonality, cytopenia, and prognosis. Multivariate analysis identified 3 key adverse prognostic factors: the presence of splicing mutation(s) (score = 2 points), platelet count <100×109/L (score = 2.5), and ≥2 mutations (score = 3). Variable scores were based on the coefficients from the Cox proportional hazards model. This led to the development of the Clonal Cytopenia Risk Score (CCRS), which stratified patients into low- (score <2.5 points), intermediate- (score 2.5-<5), and high-risk (score ≥5) groups. The CCRS effectively predicted 2-year cumulative incidence of MN for low- (6.4%), intermediate- (14.1%), and high- (37.2%) risk groups, respectively, by Gray's test (P <.0001). We further validated the CCRS by applying it to an independent CCUS cohort of 104 patients, demonstrating a c-index of 0.64 (P =.005) in stratifying the cumulative incidence of MN. Our study underscores the importance of integrating clinical and molecular data to assess the risk of CCUS progression, making the CCRS a valuable tool that is practical and easily calculable. These findings are clinically relevant, shaping the management strategies for CCUS and informing future clinical trial designs
Pharmaceuticals adn Personal Care Products (PPCPs) in a Wasterwater Receiving Stream During Normal and Low Flow Conditions
2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen
Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids
A detailed analysis of the reaction products and mechanisms of the photocatalytic oxidation of acetate in the presence of quantum-sized ZnO colloids (Dp ≈ 40 Å) is presented. The principal oxidation products and reaction intermediates are determined to be CO_2, HCO_2^-, CHOCO_2^-, HCHO, CH_3OOH, CH_3COOOH, and H_2O_2. Formate and glyoxylate, which are found as intermediates in the photooxidation of acetate, also serve as effective electron donors on illuminated ZnO surfaces. The proposed relative reactivity of electron donors toward photooxidation is in the following order: CHOCO_2- > HCO_2^- > HCHO > CH_3CO_2^- ≥ H_2O_2 CH_3COOOH > CH_3OOH. Observed product distributions are discussed in terms of pathways involving direct oxidation of surface-bound acetate by valence band holes (or trapped holes) and the indirect oxidation of acetate by surface-bound hydroxyl radicals. The product distribution observed at low photon fluxes is not consistent with oxidation primarily by free hydroxyl radicals. A mechanism involving the reaction of an intermediate carbon-centered radical with > ZnOH surface sites is proposed. When electron donors are strongly adsorbed to semiconductor surfaces, surface-mediated reactions appear to play a dominant role in the determination of the time-dependent product distributions