155 research outputs found

    Science with an ngVLA: Resolved Substructures in Protoplanetary Disks

    Get PDF
    Terrestrial planets and the cores of giant planets are thought to be built by the collisional agglomeration of solids spanning over 20 orders of magnitude in size within a few million years. However, there is tension between this basic picture of planet formation and standard theoretical assumptions associated with the migration of "pebbles" (\simmm/cm-sized particles) in gas-rich disks and the presumably much longer timescales necessary to assemble (\simkm-scale) "planetesimals". To confront these potential theoretical discrepancies with observational constraints, the ideal tracer of the solids concentrated in protoplanetary disk substructures is the 30-100 GHz continuum, which strikes the best balance in sensitivity (emission still bright), optical depth (low enough to reliably estimate densities), and angular resolution (high enough to resolve fine-scale features at disk radii as small as 1 au). With its combination of sensitivity, frequency coverage, and angular resolution, the next-generation VLA will be the only facility that has the capabilities to open up this new window into the physics of planetesimal formation.Comment: To be published in the ASP Monograph Series, Science with a Next-Generation VLA, ed. E. J. Murphy (ASP, San Francisco, CA

    The properties of the inner disk around HL Tau: Multi-wavelength modeling of the dust emission

    Full text link
    We conducted a detailed radiative transfer modeling of the dust emission from the circumstellar disk around HL Tau. The goal of our study is to derive the surface density profile of the inner disk and its structure. In addition to the Atacama Large Millimeter/submillimeter Array images at Band 3 (2.9mm), Band 6 (1.3mm), and Band 7 (0.87mm), the most recent Karl G. Jansky Very Large Array (VLA) observations at 7mm were included in the analysis. A simulated annealing algorithm was invoked to search for the optimum model. The radiative transfer analysis demonstrates that most radial components (i.e., >6AU) of the disk become optically thin at a wavelength of 7mm, which allows us to constrain, for the first time, the dust density distribution in the inner region of the disk. We found that a homogeneous grain size distribution is not sufficient to explain the observed images at different wavelengths simultaneously, while models with a shallower grain size distribution in the inner disk work well. We found clear evidence that larger grains are trapped in the first bright ring. Our results imply that dust evolution has already taken place in the disk at a relatively young (i.e., ~1Myr) age. We compared the midplane temperature distribution, optical depth, and properties of various dust rings with those reported previously. Using the Toomre parameter, we briefly discussed the gravitational instability as a potential mechanism for the origin of the dust clump detected in the first bright ring via the VLA observations.Comment: Accepted for publication in A&A (10 pages

    Characterizing the dust content of disk substructures in TW Hya

    Full text link
    We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with 50\sim50 milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87 mm, 1.3 mm, and 2.1 mm. We analyze these multi-wavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3 au cavity, the 2.1 mm and 3.1 mm images show a compact source of free-free emission, likely associated with an ionized jet. Our multi-wavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is >1>1 mm. The inner 20 au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At r>20r>20 au, we find evidence of the accumulation of large dust particle at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330 MM_{\oplus}, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5-5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.Comment: 22 pages, 17 figures, accepted for publication in A&A. Language edited versio
    corecore