15 research outputs found

    Stability of marginally outer trapped surfaces and symmetries

    Full text link
    We study properties of stable, strictly stable and locally outermost marginally outer trapped surfaces in spacelike hypersurfaces of spacetimes possessing certain symmetries such as isometries, homotheties and conformal Killings. We first obtain results for general diffeomorphisms in terms of the so-called metric deformation tensor and then particularize to different types of symmetries. In particular, we find restrictions at the surfaces on the vector field generating the symmetry. Some consequences are discussed. As an application we present a result on non-existence of stable marginally outer trapped surfaces in slices of FLRW.Comment: 23 pages, 3 figure

    Where are the trapped surfaces?

    Full text link
    We discuss the boundary of the spacetime region through each point of which a trapped surface passes, first in some simple soluble examples, and then in the self-similar Vaidya solution. For the latter the boundary must lie strictly inside the event horizon. We present a class of closed trapped surfaces extending strictly outside the apparent horizon.Comment: 6 pages, 1 figure; talk at the Spanish Relativity Meeting ERE09 in Bilba

    Fundamental properties and applications of quasi-local black hole horizons

    Full text link
    The traditional description of black holes in terms of event horizons is inadequate for many physical applications, especially when studying black holes in non-stationary spacetimes. In these cases, it is often more useful to use the quasi-local notions of trapped and marginally trapped surfaces, which lead naturally to the framework of trapping, isolated, and dynamical horizons. This framework allows us to analyze diverse facets of black holes in a unified manner and to significantly generalize several results in black hole physics. It also leads to a number of applications in mathematical general relativity, numerical relativity, astrophysics, and quantum gravity. In this review, I will discuss the basic ideas and recent developments in this framework, and summarize some of its applications with an emphasis on numerical relativity.Comment: 14 pages, 2 figures. Based on a talk presented at the 18th International Conference on General Relativity and Gravitation, 8-13 July 2007, Sydney, Australi

    Uniqueness theorems for static spacetimes containing marginally outer trapped surfaces

    Full text link
    Marginally outer trapped surfaces are widely considered as the best quasi-local replacements for event horizons of black holes in General Relativity. However, this equivalence is far from being proved, even in stationary and static situations. In this paper we study an important aspect of this equivalence, namely whether classic uniqueness theorems of static black holes can be extended to static spacetimes containing weakly outer trapped surfaces or not. Our main theorem states that, under reasonable hypotheses, a static spacetime satisfying the null energy condition and containing an asymptotically flat initial data set, possibly with boundary, which possesses a bounding weakly outer trapped surface is a unique spacetime. A related result to this theorem was given in arXiv:0711.1299, where we proved that no bounding weakly outer trapped surface can penetrate into the exterior region of the initial data where the static Killing vector is timelike. In this paper, we also fill some gaps in arXiv:0711.1299 and extend this confinement result to initial data sets with boundary.Comment: 30 pages, 9 figure

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Marginally outer trapped surfaces in stationary initial data

    No full text
    We present two results for bounding marginally outer trapped surfaces (MOTSs) in Killing initial data satisfying the null energy condition and containing an untrapped barrier. The first one applies to the stationary case and states that no bounding MOTS lying in the exterior region where the stationary Killing vector is causal and penetrating into the timelike region can exist. The second result applies to the static case and shows that no bounding MOTS can penetrate into the exterior region where the static Killing vector is timelike. These results extend an interesting theorem by P. Miao (Miao 2005)

    Marginally outer trapped surfaces in stationary initial data

    No full text

    Additive and interactive effects of spatial attention and expectation on perceptual decisions

    Get PDF
    Spatial attention and expectation are two critical top-down mechanisms controlling perceptual inference. Based on previous research it remains unclear whether their influence on perceptual decisions is additive or interactive. We developed a novel multisensory approach that orthogonally manipulated spatial attention (i.e. task-relevance) and expectation (i.e. signal probability) selectively in audition and evaluated their effects on observers’ responses in vision. Critically, while experiment 1 manipulated expectation directly via the probability of task-relevant auditory targets across hemifields, experiment 2 manipulated it indirectly via task-irrelevant auditory non-targets. Surprisingly, our results demonstrate that spatial attention and signal probability influence perceptual decisions either additively or interactively. These seemingly contradictory results can be explained parsimoniously by a model that combines spatial attention, general and spatially selective response probabilities as predictors with no direct influence of signal probability. Our model provides a novel perspective on how spatial attention and expectation facilitate effective interactions with the environment

    The 1965 Penrose singularity theorem

    No full text
    corecore