209 research outputs found
Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives
Effects of processing on polyphenolic and volatile composition and fruit quality of clery strawberries
Strawberries belonging to cultivar Clery (Fragaria x ananassa (Duchesne ex Weston)), cultivated in central Italy were subjected to a multi‐methodological experimental study. Fresh and defrosted strawberries were exposed to different processing methods, such as homogenization, thermal and microwave treatments. The homogenate samples were submitted to CIEL*a*b* color analysis and Head‐Space GC/MS analysis to determine the impact of these procedures on phytochemical composition. Furthermore, the corresponding strawberry hydroalcoholic extracts were further analyzed by HPLC‐DAD for secondary metabolites quantification and by means of spectrophotometric in vitro assays to evaluate their total phenolic and total flavonoid contents and antioxidant activity. These chemical investigations confirmed the richness in bioactive metabolites supporting the extraordinary healthy potential of this fruit as a food ingredient, as well as functional food, highlighting the strong influence of the processing steps which could negatively impact on the polyphenol composition. Despite a more brilliant red color and aroma preservation, nonpasteurized samples were characterized by a lower content of polyphenols and antioxidant activity with respect to pasteurized samples, as also suggested by the PCA analysis of the collected data
Immunophenotyping of hemocytes from infected Galleria mellonella larvae as an innovative tool for immune profiling, infection studies and drug screening
In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval. In this context, G. mellonella larvae can be considered a valid option due to their greater ease of use and the absence of ethical rules. Furthermore, it has been demonstrated that the immune system of these invertebrates has similarity with the one of mammals, thus guaranteeing the reliability of this in vivo model, mainly in the microbiological field. To better develop the full potential of this model, we present a novel approach to characterize the hemocyte population from G. mellonella larvae and to highlight the immuno modulation upon infection and treatments. Our approach is based on the detection in isolated hemocytes from G. mellonella hemolymph of cell membrane markers typically expressed by human immune cells upon inflammation and infection, for instance CD14, CD44, CD80, CD163 and CD200. This method highlights the analogies between G. mellonella larvae and humans. Furthermore, we provide an innovative tool to perform pre-clinical evaluations of the efficacy of antimicrobial compounds in vivo to further proceed with clinical trials and support drug discovery campaigns
Hypoglycemic, antiglycation, and cytoprotective properties of a phenol-rich extract from waste peel of punica granatum L. Var. Dente di cavallo DC2
Pomegranate peel is a natural source of phenolics, claimed to possess healing properties, among which are antioxidant and antidiabetic. In the present study, an ethyl acetate extract, obtained by Soxhlet from the peel of Dente di Cavallo DC2 pomegranate (PGE) and characterized to contain 4% w/w of ellagic acid, has been evaluated for its hypoglycemic, antiglycation, and antioxidative cytoprotective properties, in order to provide possible evidence for future nutraceutical applications. The α-amylase and α-glucosidase enzyme inhibition, interference with advanced glycation end-products (AGE) formation, and metal chelating abilities were studied. Moreover, the possible antioxidant cytoprotective properties of PGE under hyperglycemic conditions were assayed. Phenolic profile of the extract was characterized by integrated chromatographic and spectrophotometric methods. PGE resulted able to strongly inhibit the tested enzymes, especially α-glucosidase, and exerted chelating and antiglycation properties. Also, it counteracted the intracellular oxidative stress under hyperglycemic conditions, by reducing the levels of reactive oxygen species and total glutathione. Among the identified phenolics, rutin was the most abundant flavonoid (about 4 % w/w). Present results suggest PGE to be a possible remedy for hyperglycemia management and encourage further studies to exploit its promising properties
Characterization of arils juice and peel decoction of fifteen varieties of punica granatum l.: a focus on anthocyanins, ellagitannins and polysaccharides
Pomegranate is receiving renewed commercial and scientific interest, therefore a deeper knowledge of the chemical composition of the fruits of less studied varieties is required. In this work, juices from arils and decoctions from mesocarp plus exocarp were prepared from fifteen varieties. Samples were submitted to High Performance Liquid Chromatography—Diode Array Detector–Mass Spectrometry, spectrophotometric and colorimetric CIEL* a* b* analyses. Antioxidant, antiradical and metal chelating properties, inhibitory activity against tyrosinase and α-amylase enzymes were also evaluated. All varieties presented the same main phenols; anthocyanins and ellagitannins were widely variable among varieties, with the richest anthocyanin content in the juices from the Wonderful and Soft Seed Maule varieties (approx. 660 mg/L) and the highest ellagitannin content in the peel of the Black variety (approx. 133 mg/g dry matter). A good correlation was shown between the colour hue and the delphinidin/cyanidin ratio in juices (R 2= 0.885). Total polysaccharide yield ranged from 3% to 12% of the peels’ dry weight, with the highest content in the Black variety. Decoctions (24.44–118.50 mg KAE/g) showed better in vitro antioxidant properties and higher inhibitory capacity against tyrosinase than juices (not active-16.56 mg KAE/g); the inhibitory capacity against α-amylase was similar and quite potent for juices and decoctions. Knowledge about the chemical composition of different pomegranate varieties will allow for a more aware use of the different parts of the fruit
Longitudinal evaluation of liver stiffness and outcomes in patients with chronic hepatitis C before and after short- and long-term IFN-free antiviral treatment
Antimicrobial and antibiofilm activities of new synthesized Silver Ultra-NanoClusters (SUNCs) against Helicobacter pylori
Helicobacter pylori colonizes approximately 50% of the world\u2019s population and it is the cause of chronic gastritis, peptic ulcer disease and gastric cancer. The increase of antibiotic resistance is one of the biggest challenges of our century due to its constant increase. In order to identify an alternative or adjuvant strategy to the standard antibiotic therapy, the in vitro activity of newly synthesized Silver Ultra-NanoClusters (SUNCs), characterized by an average size inferior to 5 nm, against clinical strains of Helicobacter pylori, with different antibiotic susceptibilities, was evaluated in this study. MICs and MBCs were determined by the broth microdilution method, whereas the effect of drug combinations by the checkerboard assay. The Minimum Biofilm Eradication Concentration (MBEC) was measured using AlamarBlue (AB) assay and Colony Forming Unit (CFU) counts. The cytotoxicity was evaluated by performing the MTT assay on AGS cell line.
The inhibitory activity was expressed in terms of bacteriostatic and bactericidal potential, with MIC50, MIC90, and MBC50 of 0.33 mg/L against planktonic Helicobacter pylori strains. Using the fractional inhibitory concentration index, SUNCs showed synergism with metronidazole in one clinical strain, and very close to synergistic effect on the reference strain; the combination with clarythromicin evidenced an effect very close to synergism on both strains considered. The biofilm eradication was obtained after treatment with 2X, 3X and 4X MIC value.
Moreover, SUNCs showed low toxicity on human cells and was effective in eradicating a mature biofilm produced by H. pylori. The data presented in this study demonstrate that SUNCs could represent a novel strategy for the treatment of H. pylori infections either alone or in combination with metronidazole
Antimicrobial and Antibiofilm Activities of Carvacrol, Amoxicillin and Salicylhydroxamic Acid Alone and in Combination vs. Helicobacter pylori: Towards a New Multi-Targeted Therapy
The World Health Organization has indicated Helicobacter pylori as a high-priority pathogen whose infections urgently require an update of the antibacterial treatments pipeline. Recently, bacterial ureases and carbonic anhydrases (CAs) were found to represent valuable pharmacological targets to inhibit bacterial growth. Hence, we explored the underexploited possibility of developing a multiple-targeted anti-H. pylori therapy by assessing the antimicrobial and antibiofilm activities of a CA inhibitor, carvacrol (CAR), amoxicillin (AMX) and a urease inhibitor (SHA), alone and in combination. Minimal Inhibitory (MIC) and Minimal Bactericidal (MBC) Concentrations of their different combinations were evaluated by checkerboard assay and three different methods were employed to assess their capability to eradicate H. pylori biofilm. Through Transmission Electron Microscopy (TEM) analysis, the mechanism of action of the three compounds alone and together was determined. Interestingly, most combinations were found to strongly inhibit H. pylori growth, resulting in an additive FIC index for both CAR-AMX and CAR-SHA associations, while an indifferent value was recorded for the AMX-SHA association. Greater antimicrobial and antibiofilm efficacy of the combinations CAR-AMX, SHA-AMX and CAR-SHA against H. pylori were found with respect to the same compounds used alone, thereby representing an innovative and promising strategy to counteract H. pylori infections
Phytocomplex Characterization and Biological Evaluation of Powdered Fruits and Leaves from Elaeagnus angustifolia
Fully ripe fruits and mature leaves of Elaeagnus angustifolia were harvested and analyzed by means of analytical and biological tests to better comprehend the chemical composition and therapeutic/nutraceutical potential of this plant. Fruits and leaves were dried and the obtained powders were analyzed to study their color character and (via headspace gas chromatography) describe the chemical profile. Subsequently, they were submitted to a chloroform–methanol extraction, to a hydroalcoholic extraction procedure assisted or not by microwaves, and to an extraction with supercritical CO2, assisted or not by ethanol as the co-solvent, to detect the polyphenolic and the volatile content. The resulting extracts were evaluated in terms of chlorophyll and carotenoid content, polyphenolic content, volatile fraction, total phenolic content, total flavonoid content, antioxidant activity, radical scavenging activity, and enzymatic inhibition activity. The results confirmed the correlation between the chemical composition and the high antioxidant potential of leaf extracts compared to the fruit extracts in terms of the phenolic and pigment content. A promising effect against tyrosinase emerged for all the extracts, suggesting a therapeutic/nutraceutical use for this plant. Conversely, the volatile content from both natural matrices was similar
Synthesis and evaluation of thymol-based synthetic derivatives as dual-action inhibitors against different strains of h. pylori and AGS cell line
Following a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of H. pylori, and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and 1H/13C/19F NMR spectra. The analysis of structure-activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates. Preferred substitutions were benzyl groups compared to alkyl chains, and the specific presence of functional groups at para position of the benzyl moiety such as 4-CN and 4-Ph endowed the most anti-H. pylori activity toward all the strains with minimum inhibitory concentration (MIC) values up to 4 µg/mL. Poly-substitution on the benzyl ring was not essential. Moreover, several compounds characterized by the lowest minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values against H. pylori were also tested in order to verify a cytotoxic effect against AGS cells with respect to 5-fluorouracil and carvacrol. Three derivatives can be considered as new lead compounds alternative to current therapy to manage H. pylori infection, preventing the occurrence of severe gastric diseases. The present work confirms the possibility to use natural compounds as templates for the medicinal semi-synthesis
- …
