207 research outputs found
Homothetic Self-Similar Solutions of the Three-Dimensional Brans-Dicke Gravity
All homothetic self-similar solutions of the Brans-Dicke scalar field in
three-dimensional spacetime with circular symmetry are found in closed form.Comment: latex, five pages, without figur
Viability of primordial black holes as short period gamma-ray bursts
It has been proposed that the short period gamma-ray bursts, which occur at a
rate of , may be evaporating primordial black holes
(PBHs). Calculations of the present PBH evaporation rate have traditionally
assumed that the PBH mass function varies as . This mass
function only arises if the density perturbations from which the PBHs form have
a scale invariant power spectrum. It is now known that for a scale invariant
power spectrum, normalised to COBE on large scales, the PBH density is
completely negligible, so that this mass function is cosmologically irrelevant.
For non-scale-invariant power spectra, if all PBHs which form at given epoch
have a fixed mass then the PBH mass function is sharply peaked around that
mass, whilst if the PBH mass depends on the size of the density perturbation
from which it forms, as is expected when critical phenomena are taken into
account, then the PBH mass function will be far broader than . In this paper we calculate the present day PBH evaporation rate,
using constraints from the diffuse gamma-ray background, for both of these mass
functions. If the PBH mass function has significant finite width, as recent
numerical simulations suggest, then it is not possible to produce a present day
PBH evaporation rate comparable with the observed short period gamma-ray burst
rate. This could also have implications for other attempts to detect
evaporating PBHs.Comment: 5 pages, 2 figures, version to appear in Phys. Rev. D with additional
reference
Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function
Recent numerical evidence suggests that a mass spectrum of primordial black
holes (PBHs) is produced as a consequence of near critical gravitational
collapse. Assuming that these holes formed from the initial density
perturbations seeded by inflation, we calculate model independent upper bounds
on the mass variance at the reheating temperature by requiring the mass density
not exceed the critical density and the photon emission not exceed current
diffuse gamma-ray measurements. We then translate these results into bounds on
the spectral index n by utilizing the COBE data to normalize the mass variance
at large scales, assuming a constant power law, then scaling this result to the
reheating temperature. We find that our bounds on n differ substantially
(\delta n > 0.05) from those calculated using initial mass functions derived
under the assumption that the black hole mass is proportional to the horizon
mass at the collapse epoch. We also find a change in the shape of the diffuse
gamma-ray spectrum which results from the Hawking radiation. Finally, we study
the impact of a nonzero cosmological constant and find that the bounds on n are
strengthened considerably if the universe is indeed vacuum-energy dominated
today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added,
version to be published in PR
Fast Diffusion Process in Quenched hcp Dilute Solid He-He Mixture
The study of phase structure of dilute He - He solid mixture of
different quality is performed by spin echo NMR technique. The diffusion
coefficient is determined for each coexistent phase. Two diffusion processes
are observed in rapidly quenched (non-equilibrium) hcp samples: the first
process has a diffusion coefficient corresponding to hcp phase, the second one
has huge diffusion coefficient corresponding to liquid phase. That is evidence
of liquid-like inclusions formation during fast crystal growing. It is
established that these inclusions disappear in equilibrium crystals after
careful annealing.Comment: 7 pages, 3 figures, QFS200
Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions
This investigation is devoted to the solutions of Einstein's field equations
for a circularly symmetric anisotropic fluid, with kinematic self-similarity of
the first kind, in -dimensional spacetimes. In the case where the radial
pressure vanishes, we show that there exists a solution of the equations that
represents the gravitational collapse of an anisotropic fluid, and this
collapse will eventually form a black hole, even when it is constituted by the
phantom energy.Comment: 10 page
Accessing elite nurses for research: reflections on the theoretical and practical issues of telephone interviewing
Elite groups are interesting as they frequently are powerful (in terms of position, knowledge and influence) and enjoy considerable authority. It is important, therefore, to involve them in research concerned with understanding social contexts and processes. This is particularly pertinent in healthcare, where considerable strategic development and change are features of everyday practice that may be guided or perceived as being guided, by elites.
This paper evolved from a study investigating the availability and role of nurses whose remit involved leading nursing research and development within acute NHS Trusts in two health regions in Southern England. The study design included telephone interviews with Directors of Nursing Services during which time the researchers engaged in a reflective analysis of their experiences of conducting research with an `elite' group. Important issues identified were the role of gatekeepers, engagement with elites and the use of the telephone interview method in this context. The paper examines these issues and makes a case for involving executive nurses in further research. The paper also offers strategies to help researchers design and implement telephone interview studies successfully to maximise access to the views and experiences of `hard to reach groups', such as elites, while minimising the associated disruption
Colonic fermentation â more than meets the nose
Fermentation of undigested foods in the colon by its resident bacteria affects not only colonic health (protection against inflammation and tumour formation) but also influences metabolic health. Studying fermentation directly is difficult for lack of access. We hypothesise that the anatomical structure of the colon is suited to act as a fermenting chamber with the gaseous molecules (VOCs) emitted having direct effects on the colonocytes as well as gut neural and metabolic effects. We refer to this complex system as the âfermentomeâ, and further hypothesise that alteration in the âfermentomeâ through dietary modification will have a direct impact on colonic as well as metabolic health and disease. The VOCs emitted may play a role in bacterial chemical signalling within the colon but importantly could also function as a âgasâ biomarker. Measurement of such VOCs through non-invasive methods would have important application as a hypothesis-generating tool with subsequent clinical application
Excess energy of an ultracold Fermi gas in a trapped geometry
We have analytically explored finite size and interparticle interaction
corrections to the average energy of a harmonically trapped Fermi gas below and
above the Fermi temperature, and have obtained a better fitting for the excess
energy reported by DeMarco and Jin [Science , 1703 (1999)]. We
have presented a perturbative calculation within a mean field approximation.Comment: 8 pages, 4 figures; Accepted in European Physical Journal
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
Cosmic Black-Hole Hair Growth and Quasar OJ287
An old result ({\tt astro-ph/9905303}) by Jacobson implies that a black hole
with Schwarzschild radius acquires scalar hair, ,
when the (canonically normalized) scalar field in question is slowly
time-dependent far from the black hole, with
time-independent. Such a time dependence could arise in
scalar-tensor theories either from cosmological evolution, or due to the slow
motion of the black hole within an asymptotic spatial gradient in the scalar
field. Most remarkably, the amount of scalar hair so induced is independent of
the strength with which the scalar couples to matter. We argue that Jacobson's
Miracle Hair-Growth Formula implies, in particular, that an
orbiting pair of black holes can radiate {\em dipole} radiation, provided only
that the two black holes have different masses. Quasar OJ 287, situated at
redshift , has been argued to be a double black-hole binary
system of this type, whose orbital decay recently has been indirectly measured
and found to agree with the predictions of General Relativity to within 6%. We
argue that the absence of observable scalar dipole radiation in this system
yields the remarkable bound on the
instantaneous time derivative at this redshift (as opposed to constraining an
average field difference, , over cosmological times), provided
only that the scalar is light enough to be radiated --- i.e. m \lsim 10^{-23}
eV --- independent of how the scalar couples to matter. This can also be
interpreted as constraining (in a more model-dependent way) the binary's motion
relative to any spatial variation of the scalar field within its immediate
vicinity within its host galaxy.Comment: 20 page
- âŠ