545 research outputs found

    One-dimensional many-body entangled open quantum systems with tensor network methods

    Full text link
    We present a collection of methods to simulate entangled dynamics of open quantum systems governed by the Lindblad equation with tensor network methods. Tensor network methods using matrix product states have been proven very useful to simulate many-body quantum systems and have driven many innovations in research. Since the matrix product state design is tailored for closed one-dimensional systems governed by the Schr\"odinger equation, the next step for many-body quantum dynamics is the simulation of open quantum systems. We review the three dominant approaches to the simulation of open quantum systems via the Lindblad master equation: quantum trajectories, matrix product density operators, and locally purified tensor networks. Selected examples guide possible applications of the methods and serve moreover as a benchmark between the techniques. These examples include the finite temperature states of the transverse quantum Ising model, the dynamics of an exciton traveling under the influence of spontaneous emission and dephasing, and a double-well potential simulated with the Bose-Hubbard model including dephasing. We analyze which approach is favorable leading to the conclusion that a complete set of all three methods is most beneficial, push- ing the limits of different scenarios. The convergence studies using analytical results for macroscopic variables and exact diagonalization methods as comparison, show, for example, that matrix product density operators are favorable for the exciton problem in our study. All three methods access the same library, i.e., the software package Open Source Matrix Product States, allowing us to have a meaningful comparison between the approaches based on the selected examples. For example, tensor operations are accessed from the same subroutines and with the same optimization eliminating one possible bias in a comparison of such numerical methods.Comment: 24 pages, 8 figures. Small extension of time evolution section and moving quantum simulators to introduction in comparison to v

    Vortex macroscopic superpositions in ultracold bosons in a double-well potential

    Get PDF
    We study macroscopic superpositions in the orbital rather than the spatial degrees of freedom, in a three-dimensional double-well system. We show that the ensuing dynamics of NN interacting excited ultracold bosons, which in general requires at least eight single-particle modes and (N+7N){N+7 \choose N} Fock vectors, is described by a surprisingly small set of many-body states. An initial state with half the atoms in each well, and purposely excited in one of them, gives rise to the tunneling of axisymmetric and transverse vortex structures. We show that transverse vortices tunnel orders of magnitude faster than axisymmetric ones and are therefore more experimentally accessible. The tunneling process generates macroscopic superpositions only distinguishable by their orbital properties and within experimentally realistic times.Comment: 9 pages, 6 figure
    • …
    corecore