10,996 research outputs found

    Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack

    Get PDF
    Low-speed, static wind-tunnel tests were conducted to explore the effects of fighter fuselage forebody geometry on lateral-directional characteristics at high angles of attack and to provide data for general design procedures. Effects of eight different forebody configurations and several add-on devices (e.g., nose strakes, boundary-layer trip wires, and nose booms) were investigated. Tests showed that forebody design features such as fineness ratio, cross-sectional shape, and add-on devices can have a significant influence on both lateral-directional and longitudinal aerodynamic stability. Several of the forebodies produced both lateral-directional symmetry and strong favorable changes in lateral-directional stability. However, the same results also indicated that such forebody designs can produce significant reductions in longitudinal stability near maximum lift and can significantly change the influence of other configuration variables. The addition of devices to highly tailored forebody designs also can significantly degrade the stability improvements provided by the clean forebody

    Dynamic behavior of an unsteady trubulent boundary layer

    Get PDF
    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle

    Study of process variables associated with manufacturing hermetically sealed nickel-cadium cells Quarterly report, 23 May - 23 Aug. 1970

    Get PDF
    Separator materials, ceramic to metal seals, cell plate polarization and impregnation processes, and plaque sintering data for study of variables in manufacture of nickel cadmium cell

    Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes

    Get PDF
    The recent discovery of critical phenomena arising in gravitational collapse near the threshold of black hole formation is used to estimate the initial mass function of primordial black holes (PBHs). It is argued that the universal scaling relation between black hole mass and initial perturbation found for a variety of collapsing space-times also applies to PBH formation, indicating the possibility of the formation of PBHs with masses much smaller than one horizon mass. Owing to the natural fine-tuning of initial conditions by the exponential decline of the probability distribution for primordial density fluctuations, sub-horizon mass PBHs are expected to form at all epochs. This result suggests that the constraints on the primordial fluctuation spectrum based on the abundance of PBHs at different mass scales may have to be revisited.Comment: 4 pages, uses revtex, also available at http://bigwhirl.uchicago.edu/jcn/pub_pbh.html . To appear in Phys. Rev. Let

    Emergence of steady and oscillatory localized structures in a phytoplankton-nutrient model

    Get PDF
    Co-limitation of marine phytoplankton growth by light and nutrient, both of which are essential for phytoplankton, leads to complex dynamic behavior and a wide array of coherent patterns. The building blocks of this array can be considered to be deep chlorophyll maxima, or DCMs, which are structures localized in a finite depth interior to the water column. From an ecological point of view, DCMs are evocative of a balance between the inflow of light from the water surface and of nutrients from the sediment. From a (linear) bifurcational point of view, they appear through a transcritical bifurcation in which the trivial, no-plankton steady state is destabilized. This article is devoted to the analytic investigation of the weakly nonlinear dynamics of these DCM patterns, and it has two overarching themes. The first of these concerns the fate of the destabilizing stationary DCM mode beyond the center manifold regime. Exploiting the natural singularly perturbed nature of the model, we derive an explicit reduced model of asymptotically high dimension which fully captures these dynamics. Our subsequent and fully detailed study of this model - which involves a subtle asymptotic analysis necessarily transgressing the boundaries of a local center manifold reduction - establishes that a stable DCM pattern indeed appears from a transcritical bifurcation. However, we also deduce that asymptotically close to the original destabilization, the DCM looses its stability in a secondary bifurcation of Hopf type. This is in agreement with indications from numerical simulations available in the literature. Employing the same methods, we also identify a much larger DCM pattern. The development of the method underpinning this work - which, we expect, shall prove useful for a larger class of models - forms the second theme of this article

    Growth of primordial black holes in a universe containing a massless scalar field

    Full text link
    The evolution of primordial black holes in a flat Friedmann universe with a massless scalar field is investigated in fully general relativistic numerical relativity. A primordial black hole is expected to form with a scale comparable to the cosmological apparent horizon, in which case it may go through an initial phase with significant accretion. However, if it is very close to the cosmological apparent horizon size, the accretion is suppressed due to general relativistic effects. In any case, it soon gets smaller than the cosmological horizon and thereafter it can be approximated as an isolated vacuum solution with decaying mass accretion. In this situation the dynamical and inhomogeneous scalar field is typically equivalent to a perfect fluid with a stiff equation of state p=ρp=\rho. The black hole mass never increases by more than a factor of two, despite recent claims that primordial black holes might grow substantially through accreting quintessence. It is found that the gravitational memory scenario, proposed for primordial black holes in Brans-Dicke and scalar-tensor theories of gravity, is highly unphysical.Comment: 24 pages, accepted for publication in Physical Review

    Beyond the hybrid library : libraries in a Web 2.0 world

    Get PDF
    Considers the development of social networking and the concept of Web 2.0. Looks at the implications for libraries and how traditional competences remain relevant. Explores what libraries are doing and must do to remain relevan

    Limits of sympathetic cooling of fermions by zero temperature bosons due to particle losses

    Full text link
    It has been suggested by Timmermans [Phys. Rev. Lett. {\bf 87}, 240403 (2001)] that loss of fermions in a degenerate system causes strong heating. We address the fundamental limit imposed by this loss on the temperature that may be obtained by sympathetic cooling of fermions by bosons. Both a quantum Boltzmann equation and a quantum Boltzmann \emph{master} equation are used to study the evolution of the occupation number distribution. It is shown that, in the thermodynamic limit, the Fermi gas cools to a minimal temperature kBT/μ(γloss/γcoll)0.44k_{{\rm B}}T/\mu\propto(\gamma_{{\rm loss}}/\gamma_{{\rm coll}})^{0.44}, where γloss\gamma_{{\rm loss}} is a constant loss rate, γcoll\gamma_{{\rm coll}} is the bare fermion--boson collision rate not including the reduction due to Fermi statistics, and μkBTF\mu\sim k_{{\rm B}}T_{{\rm F}} is the chemical potential. It is demonstrated that, beyond the thermodynamic limit, the discrete nature of the momentum spectrum of the system can block cooling. The unusual non-thermal nature of the number distribution is illustrated from several points of view: the Fermi surface is distorted, and in the region of zero momentum the number distribution can descend to values significantly less than unity. Our model explicitly depends on a constant evaporation rate, the value of which can strongly affect the minimum temperature.Comment: 14 pages, 7 figures. Phys. Rev. A in pres
    corecore