364 research outputs found

    Invasive aspergillosis following HSCT: Outcomes and prognostic factors associated with mortality

    Get PDF

    Implementing a small media intervention to increase colorectal cancer screening in primary care clinics

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers in the USA. In 2017, an estimated 135,420 people were diagnosed with CRC and 50,260 people died from CRC. Several screening modalities are recommended by the United States Preventive Services Task Force (USPSTF), including annual stool tests that are usually completed at home and under-used compared with colonoscopy despite stated patient preferences for an alternative to colonoscopy. The Community Preventive Services Task Force recommends use of small media interventions (SMIs) to increase CRC screening and calls for a greater understanding of its independent impact on screening participation. This study tested whether a SMI increased the likelihood of participant return of a USPSTF recommended Fecal Immunochemical Test (FIT). In total, 804 individuals participated in a two-group, prospective randomized controlled trial. Descriptive statistics with chi-square tests compared differences in participant characteristics and return rates. Multivariable log-binomial modeling estimated combined effects of patient characteristics with FIT return rates. No differences in return rates were observed overall or by participant characteristics other than the year of enrollment. A multivariable model controlling for all covariates, found gender, insurance type, and regular place for healthcare to be significantly associated with return rates. Receipt of the SMI did not independently increase overall return rates but it may have improved the ease of completing the FIT by some participants, particularly women, those with insurance, and those with a regular place for healthcare

    Responding to a Community's Concern: A Comparison of Breast Cancer Characteristics and Initial Treatment in Three Selected North Carolina Counties

    Get PDF
    BACKGROUND A 2007 national report identified North Carolina's Edgecombe County as having among the highest breast cancer incidence and mortality rates nationally, motivating the initiation of a task force and other local efforts to address the problem. The goal of this study is to examine county breast cancer characteristics before and after the report, including whether geographic variation may mask racial disparities in this majority African American community. METHOD With guidance from community partners, breast cancer cases from 2000 to 2012 in Edgecombe, Nash, and Orange Counties (N = 2,641) were obtained from the North Carolina Central Cancer Registry. Bivariate and trend analyses of tumor and treatment characteristics were examined by county and race. RESULTS Women in Edgecombe and Nash Counties were diagnosed with more advanced stage, higher grade tumors. African Americans in Edgecombe and Nash Counties were diagnosed with advanced disease more often than African Americans in Orange County. Average time-to-treatment was well within guideline recommendations. Incidence and mortality rates appear to have declined, with variation in measures of racial differences over time. LIMITATIONS Changes in coding standards across the observation period required reliance on coarse measures that may partially mute useful findings. CONCLUSIONS Racial disparities remain a concern in North Carolina; however, they appear to be less profound than in the 2007 national report. The portentous statistics in the report represent an all-time high, after which some, but not all, measures reflect positive change amidst ongoing local efforts to improve breast cancer knowledge and care

    Functional Characterization of N297A, A Murine Surrogate for low-Fc Binding Anti-Human CD3 Antibodies

    Get PDF
    Several low- or non-FcR binding anti-human CD3 monoclonal antibodies have been under investigation for the treatment of autoimmune diseases. To model the mechanism of action of these anti-human CD3 mAbs in the murine system, an Fc-modified anti-mouse CD3 antibody (N297A) was generated. N297A exhibited similar biological effects as Fc-modified anti-human CD3 antibodies including rapid, reversible reduction in peripheral leukocyte numbers, differential modulation of activated versus resting T cells, and reduced levels of induced cytokine release compared to the non-Fc-modified parent antibody. In an in vivo model of colitis induced by adoptive transfer of IL–10-deficient cells, administration of N297A significantly reduced body weight loss. As N297A shared many functional characteristics of non-FcR binding anti-human CD3 mAbs both in vitro and in vivo, it provides a means to model the mechanisms of action of Fc-modified anti-human CD3 antibodies in mouse

    Brain choline concentration: early quantitative marker of ischemia and infarct expansion?

    Get PDF
    Objective: Better prediction of tissue prognosis in acute stroke might improve treatment decisions. We hypothesized that there are metabolic ischemic disturbances measurable non-invasively by proton MR spectroscopy (1HMRS) that occur earlier than any structural changes visible on diffusion tensor imaging (DTI), which may therefore serve for territorial identification of “tissue at risk”. Methods: We performed multi-voxel 1HMRS plus DTI within a maximum of 26 hours, and DTI at three-seven days, after ischemic stroke. We compared choline, lactate, NAA, creatine concentrations in normal-appearing voxels that became infarcted("infarct expansion”), with normal-appearing voxels around the infarct that remained “healthy”(“non-expansion”) on follow-up DTI. Each “infarct expansion” voxel was additionally classified as either “complete infarct expansion”(infarcted tissue on follow-up DTI covered ≥50% of the voxel) or “partial infarct expansion”(<50% of voxel). Results: In 31 patients (NIHSS:0–28) there were 108 infarct "non-expansion” voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” and 33 “partial expansion” voxels). Brain choline concentration increased for each change in expansion category from "non-expansion", via "partial expansion" to "complete expansion" (2423, 3843, 4158i.u.; p<0.05). Changes in lactate, NAA and creatine concentrations in expansion category were insignificant although for lactate there was a tendency to such association. Conclusions: Choline concentration measurable with 1HMRS was elevated in peri-ischemic normal-appearing brain that became infarcted by three-seven days. The degree of elevation was associated with the amount of infarct expansion. 1HMRS might identify DTI-normal appearing tissue at risk of conversion to infarction in early stroke

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Intercellular communication between airway epithelial cells is mediated by exosome-like vesicles

    Get PDF
    Airway epithelium structure/function can be altered by local inflammatory/immune signals, and this process is called epithelial remodeling. The mechanism by which this innate response is regulated, which causes mucin/mucus overproduction, is largely unknown. Exosomes are nanovesicles that can be secreted and internalized by cells to transport cellular cargo, such as proteins, lipids, and miRNA. The objective of this study was to understand the role exosomes play in airway remodeling through cell–cell communication. We used two different human airway cell cultures: primary human tracheobronchial (HTBE) cells, and a cultured airway epithelial cell line (Calu-3). After intercellular exosomal transfer, comprehensive proteomic and genomic characterization of cell secretions and exosomes was performed. Quantitative proteomics and exosomal miRNA analysis profiles indicated that the two cell types are fundamentally distinct. HTBE cell secretions were typically dominated by fundamental innate/protective proteins, including mucin MUC5B, and Calu-3 cell secretions were dominated by pathology-associated proteins, including mucin MUC5AC. After exosomal transfer/intake, approximately 20% of proteins, including MUC5AC and MUC5B, were significantly altered in HTBE secretions. After exosome transfer, approximately 90 miRNAs (z4%) were upregulated in HTBE exosomes, whereas Calu-3 exosomes exhibited a preserved miRNA profile. Together, our data suggest that the transfer of exosomal cargo between airway epithelial cells significantly alters the qualitative and quantitative profiles of airway secretions, including mucin hypersecretion, and the miRNA cargo of exosomes in target cells. This finding indicates that cellular information can be carried between airway epithelial cells via exosomes, which may play an important role in airway biology and epithelial remodeling

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR
    corecore