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Abstract 

Objective: Better prediction of tissue prognosis in acute stroke might improve 

treatment decisions. We hypothesized that there are metabolic ischemic 

disturbances measurable non-invasively by proton MR spectroscopy (1HMRS) that 

occur earlier than any structural changes visible on diffusion tensor imaging (DTI), 

which may therefore serve for territorial identification of “tissue at risk”. Methods: We 

performed multi-voxel 1HMRS plus DTI within a maximum of 26 hours, and DTI at 

three-seven days, after ischemic stroke. We compared choline, lactate, NAA, 

creatine concentrations in normal-appearing voxels that became infarcted("infarct 

expansion”), with normal-appearing voxels around the infarct that remained 

“healthy”(“non-expansion”) on follow-up DTI. Each “infarct expansion” voxel was 

additionally classified as either “complete infarct expansion”(infarcted tissue on 

follow-up DTI covered ≥50% of the voxel) or “partial infarct expansion”(<50% of 

voxel). Results: In 31 patients (NIHSS:0–28) there were 108 infarct "non-expansion” 

voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” 

and 33 “partial expansion” voxels). Brain choline concentration increased for each 

change in expansion category from "non-expansion", via "partial expansion" to 

"complete expansion" (2423, 3843, 4158i.u.; p<0.05). Changes in lactate, NAA and 

creatine concentrations in expansion category were insignificant although for lactate 

there was a tendency to such association. Conclusions: Choline concentration 

measurable with 1HMRS was elevated in peri-ischemic normal-appearing brain that 

became infarcted by three-seven days. The degree of elevation was associated with 

the amount of infarct expansion. 1HMRS might identify DTI-normal appearing tissue 

at risk of conversion to infarction in early stroke. 
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Introduction 

In clinical stroke practice, management decisions, including use of thrombolytic 

treatment, are based on physical examination, neuroimaging to exclude hemorrhage, 

and time from stroke onset to treatment, assuming that there is “tissue at risk” of 

infarction that could be salvaged. However, for some patients, very early time 

windows are already too late, whilst others may have salvageable tissue for many 

hours after stroke, making the time window alone too non-specific1,2.  

Currently there is no reliable, sensitive and specific method for early non-invasive 

determination of tissue at risk: the mismatch between Diffusion- and Perfusion-

Weighted Imaging is still being evaluated1-4, and there are no CSF or blood markers 

that diagnose stroke or predict prognosis reliably5,6. 

We hypothesized that in acute ischemic stroke, metabolic disturbances could be 

measurable in ischemic tissue much earlier than any structural changes. If true, 

changes in brain metabolite concentrations in normal appearing tissue on diffusion 

imaging outside the lesion soon after ischemic stroke measured with Magnetic 

Resonance Spectroscopy (MRS)7,8 might predict the likelihood and direction of 

further infarct expansion and hence prognosis. To test this hypothesis, we compared 

concentrations of selected brain metabolites measured with MRS in the normal-

appearing tissue around the acute infarct as seen on Diffusion Tensor Imaging (DTI) 

early after stroke that converted to infarction by three to seven days, with that which 

remained normal on DTI. The selection of metabolites for this study was based on 

the assumptions that they should represent important elements in pathophysiological 

pathways following acute stroke and that their concentrations are readily observable 

in a short scanning time. 
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Methods 

Patient Recruitment 

We prospectively recruited patients with acute ischemic stroke and without 

contraindications to Magnetic Resonance Imaging (MRI) admitted to our hospital 

acute stroke service. Each patient was carefully examined by a stroke physician who 

measured stroke severity using National Institutes of Health Stroke Scale (NIHSS) 

and determined stroke sub-type by the Oxfordshire Community Stroke Project 

(OCSP) classification9. Patients underwent MRI as soon as possible after stroke but 

within a maximum of 24 hours from onset. Follow-up MRI was performed at three to 

seven days after stroke. Onset was defined as the time when signs were first noticed 

by a patient, or symptoms first observed, or, if a patient awoke already having stroke 

symptoms, the time last known to be well.  

 

Standard Protocol Approvals, Registrations, and Patient Consents 

The study was approved by the Lothian Research Ethics Committee on human 

experimentation and written informed consent was obtained from the patients or 

assent from their relatives. 

 

Diffusion and Spectroscopy Techniques 

All MR data were obtained on a GE Signa HDX 1.5T (General Electric, Milwaukee, 

WI, USA) scanner with self-shielding gradients (33 mT/m maximum) and a ‘birdcage’ 

quadrature head coil. In each patient we performed axial T2-weighted fast spin-echo 

and FLuid Attenuated Inversion Recovery (FLAIR) imaging, axial DWI and/or DTI 

with field-of-view (FOV) 240x240 mm, 15 axial slices of thickness 5 mm, slice gap 1 

mm, acquisition matrix 128x128, echo time 97.4 ms, repetition time 10 s and diffusion 
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sensitizing gradients with scalar b-values of 1000 s/mm2 applied in six non-collinear 

directions, and Multi-voxel Point Resolved Spectroscopy (PRESS)-localized proton 

MRS (1HMRS, FOV 320x320 mm, slice thickness 10 mm, acquisition matrix 24x24, 

echo time 145 ms and repetition time 1000 ms). DTI and 1HMRS with FLAIR and T2* 

imaging were performed on admission, and DTI, FLAIR, and T2* at three-seven days 

after stroke. The 1HMRS voxel grid was carefully centered on the slice showing the 

maximum ischemic lesion extent on DTI (Figures 1 and 2) and placed within brain to 

avoid contamination of the spectra by lipid signal from bone marrow or subcutaneous 

tissue, but to include as much as possible of the brain as possible. We used the 

scanner’s standard three-pulse CHEmical Shift Selective (CHESS) water 

suppression and shimming, optimized on the slice of interest. Additional saturation 

bands were placed around the PRESS box to minimize lipid contamination. Each 

1HMRS data set took approximately nine minutes to acquire, and the data were 

effectively ‘averaged’ over this period. Bulk patient motion and eddy current-induced 

artifacts were removed from the DTI data using a three dimensional (3D) 

computational image alignment program to register the component echo-planar 

imaging volumes to the T2-weighted volumes acquired with the DTI protocol. Maps of 

the average DTI signal were obtained from the six DTI images acquired for each 

slice. 

Spectroscopic images were interpolated to a 32x32 matrix yielding 1000 mm3 voxels 

and all processing was carried out on a voxel-by-voxel basis after setting the residual 

water signal in each voxel to a standard chemical shift of 4.70 ppm. All spectroscopic 

data were modelled in the time domain by five Gaussian components (corresponding 

to choline, creatine, N-acetyl aspartate (NAA) and the lactate doublet) using the 

Advanced Method for Accurate Robust and Efficient Spectral Fitting (AMARES) 
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algorithm within the Magnetic Resonance User Interface (MRUI) package 

(http://www.mrui.uab.es/mrui). The data were transformed to spectra for display and 

visual quality control purposes. 

 

Metabolite Concentrations 

Choline, creatine, NAA and lactate were identified by their characteristic 

appearances at echo time 145 ms (Figure 1). Metabolite quantification took into 

account coil loading (using the scanner’s radiofrequency transmitter gain) and 

receiver gain thus enabling inter-subject (and obviously intra-subject) comparison of 

individual metabolite concentrations. Careful patient set-up ensured between subject 

set-up reproducibility and good coil uniformity: we previously found that coil 

uniformity is very good across an axial slice near the centre of the coil (data not 

published). Our metabolite concentration unit was  an ‘institutional unit’ (i.u.).  

 

Tissue Classification and Estimation of Tissues Metabolites’ Concentrations  

1HMRS and DTI data were co-registered using an affine transformation. The multi-

voxel MRS grid was superimposed onto the admission DTI using software designed 

in-house. The grid voxels on admission DTI were classified as falling on or outside 

the acute DTI hyperintense ischemic lesion blind to all other information; then the 

voxel grid was compared with the DTI lesion appearance at three-seven days to 

identify voxels superimposed on tissue located outside the lesion that were normal 

on admission and remained normal on follow-up, or voxels superimposed on tissue 

located outside the lesion that were normal on admission but became hyperintense 

on DTI at three-seven days, also blind to all other data. We used the diffusion image 

at three-seven days as an indication of infarct growth because at three-seven days 
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diffusion imaging usually mirrors the three-seven day T2 or FLAIR appearance10, and 

is easier to assess visually than the B0-T2 image. Although the three-seven day 

infarct extent is not the final infarct (because infarct evolution is generally considered 

to be complete by three months), it is a useful indicator of early lesion growth due to 

recruitment of early penumbral tissue into the infarct before other secondary events 

can influence infarct extent (e.g. recurrent stroke, hypotension). 

The concentrations of choline, creatine, NAA and lactate from each voxel in the 

spectroscopy grid were extracted and compared between: 1) voxels on the 

admission DTI that appeared normal around the ischemic lesion, but that converted 

to infarction on the follow-up DTI ("infarct expansion” voxels) and 2) voxels on the 

admission DTI that appeared normal around the ischemic lesion, which remained 

“healthy” on the follow-up DTI ("non-expansion” voxels). 

Additionally, each “infarct expansion” voxel was classified as either “complete infarct 

expansion” voxel (infarcted tissue on the follow-up DTI covered over 50% of each 

individual voxel) or “partial infarct expansion” voxel (infarcted tissue on the follow-up 

DTI covered less than 50% of each individual voxel); Figure 2. The subdivision was 

introduced to investigate whether the metabolite concentration measured early after 

stroke in peri-infarcted tissue can be used for estimating the magnitude of potential 

infarct expansion (quantitative analysis) in addition to making prognosis on infarct 

expansion on a “yes” or “no” basis. 

 

Statistical Analysis 

We compared choline, creatine, NAA and lactate concentrations in “non-expansion” 

and “expansion” voxels using a linear mixed model. We tested the change in 

metabolite concentrations per change in expansion category: from “non-expansion”, 
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via "partial expansion” (below 50% of each voxel), to “complete expansion” (over 

50% of each voxel). We used the logarithmic transformations (log) of the metabolite 

concentrations rather than their raw values because the model fitted better when 

metabolite concentrations were linear. 

 

Results 

We recruited 31 patients (mean age: 74 years; range: 45-88) with acute ischemic 

stroke between December 2007 and March 2009 with admission and follow-up 

imaging. According to OCSP classification9 there were 11 TACS, 12 PACS, 5 LACS, 

2 POCS, and 1 of undetermined subtype. The mean NIHSS was 10, median 7, 

range: 0-28. The mean time from stroke onset to admission MRI was 16.3 hours, 

median 17 hours, range four to 26 hours. Four patients underwent initial MRI by two 

hours beyond the designed 24 hours but were included in the analysis (decision 

taken blind to any information on the results) as the benefits (more reliable statistics 

in a larger cohort) outweighed the drawbacks. We identified 108 "non-expansion” 

voxels and 113 "expansion” voxels amongst which there were 80 “complete 

expansion” voxels and 33 “partial expansion” voxels. Amid 31 patients there were 27 

with at least one “non-expansion” voxel and 20 with one or more “expansion” voxels. 

Among five patients classified as LACS on admission, definite lesion growth was 

observed in three using our voxel classification. 

 

Choline 

Mean brain choline concentration in "healthy-looking" voxels on initial DTI that 

converted to infarction on the follow-up DTI (“expansion” voxels) was higher than in 

DTI tissues immediately outside the lesion which remained “healthy-looking” on the 
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follow-up DTI (“non-expansion” voxels; Figure 3); the log of the choline concentration 

increased by 0.48 units (95% CI 0.0069, 0.95) for each change in expansion 

category from the baseline of "non-expansion", through ”partial” to “complete” 

expansion, (p=0.047; Figure 3). 

 

Lactate 

Although lactate concentration was highest in “complete expansion” voxels and 

lowest in “non-expansion” voxels (“complete expansion”: 1078; ”partial expansion”: 

962; “non-expansion”: 654 i.u.), the change in tissue lactate concentration with 

“expansion” category was not significant (Figure 4). 

 

N-acetyl Aspartate 

There was no difference in NAA concentration in “expansion” versus “non-expansion” 

voxels (p=0.60; Figure 4). 

 

Creatine 

There was no difference in creatine concentration in “expansion” versus “non-

expansion” voxels (p=0.13; Figure 4). 

 

Discussion 

We found that choline concentration measured by 1HMRS in DTI-normal appearing 

tissue located around the ischemic lesion within the first 26 hours from stroke onset 

was elevated in those voxels that became infarcted on DTI within the next few days. 

Moreover, the degree of ischemic expansion was associated with the degree of 

elevation of choline concentration. Further studies are required to determine whether 
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choline concentration is a reliable, sensitive or specific measure for predicting infarct 

growth, including identification of the potential threshold values, and therefore could 

be used to support treatment decisions in routine practice. 

We speculated that metabolite concentrations might have prognostic value because 

some metabolic products are pathophysiologically likely to mirror cellular 

sufficiency/insufficiency at the time of imaging. This is in contrast to other approaches 

to detect “tissue at risk”, for example perfusion imaging (including DWI/PWI 

mismatch), which gives an indirect estimate of tissue state by extrapolating from 

blood flow levels11,12. 

Hypothetically, in ischemic stroke patients, thrombolytic treatment might be 

considered over six hours from onset if there was still a high probability of further 

lesion expansion and if this could be assessed reliably and non-invasively on 

admission. However, as this is only speculative at this stage, further studies are 

required involving prospective 1HMRS metabolite measurement in acute ischemic 

stroke with clinical characteristics, ideally in patients treated with tissue plasminogen 

activator (tPA). Importantly, the time needed to obtain 1HMRS data seems 

acceptable in clinical setting as it takes not longer than ten minutes (much less in 

some circumstances). Although currently our approach demands specialist off line 

image processing, all MR manufacturers now provide MRS processing software on 

console, which could be used in routine practice enabling results to be obtained 

within reasonable time after MRI. 

Several previous studies assessed metabolite concentrations measured by MRS to 

predict final infarct size, clinical deficit or functional outcome11-16. However, with few 

exceptions11,12,16, they mainly focused on metabolites measured within the lesion 

core. In our study we prospectively investigated associations between metabolic 
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disturbances in anatomically normal peri-infarct tissue (on DTI) and future qualitative 

and quantitative ischemic changes on DTI in the same tissue. This approach might 

allow determination of the anatomical direction of lesion expansion, estimate 

prognosis for a particular brain region, or possibly predict the magnitude of future 

ischemic changes (“partial” or “complete” expansion). 

We selected lactate, NAA, choline and creatine because their concentrations are 

readily observable in a relatively short scanning time using a widely available MRS 

technique. The short scanning time is important in managing severely ill stroke 

patients as it does not significantly delay interventions in clinical practice7,8. 

Concentrations of other metabolites measurable with longer scanning sessions (such 

as glutamate) might be of support in estimating “penumbra” but are currently much 

more difficult to measure reliably in clinical practice, although their utility for this 

approach should be also investigated in the future. 

Previous studies on choline pathophysiology in the brain showed that mild hypoxia 

significantly increased cerebral choline levels17 and its concentration decreased 

within days of ischemia-induced membrane rupture18. The effect of mild hypoxia 

would be consistent with choline concentration being highest in the tissue which 

became infarcted, as in our results, although it is unlikely that membrane rupture 

would fit with our results as this is usually a late occurrence in established infarction 

when the lesion would be clearly visible on DTI, not in normal-appearing tissue. The 

hypotheses that might explain our finding of elevated choline and progression of 

penumbral tissue to infarction include upregulation of genes for enzymes responsible 

for metabolism of free choline, phosphatidylcholine (PC; a compound containing 95% 

of the total pool of body choline), phosphocholine or CDP-choline (intermediates 

towards PC synthesis), such as CTP:phosphocholine cytidylyltransferase, or body 

Deleted: For this study w

Deleted: -acetyl aspartate

Deleted: 12

Deleted: 13

Deleted: 8

Deleted: 9

Deleted:  



Karaszewski, MS ID#: NEUROLOGY/2009/306191 

 1

1

choline redistribution for the benefit of the ischemic brain19. These mechanisms might 

stimulate and enable neurite branching or stabilization of neurolemma, and thus 

promote tissue salvage19. Alternatively, patients whose ischemic lesion grew might 

have had lower brain choline concentrations before stroke, and therefore their brains' 

cells were prone to quicker membrane destabilization and thus to infarction. 

We recently showed that choline is not a “stable” metabolite in acute stroke lesions, 

but changes with time after stroke20. This questioned the commonly regarded 

potential of choline to serve as a denominator for other metabolite concentration 

measurements, which may perhaps be the main reason for missing it as a marker of 

tissue at risk of infarction in its own right. Future studies are needed to explain the 

pathophysiological background of elevated choline concentration early after acute 

ischemia prior to any structural changes in the brain on DTI. 

The increase in lactate concentration is the net effect of its overproduction, impaired 

utilization and decreased washout in ischemic brain and might correlate with oxygen 

deprivation8,12,21-24. In stroke patients, lactate concentration is the highest in the 

lesion core, and then in the penumbral tissue as defined by DWI/PWI mismatch11,12 

or in a rim of normal tissue on DTI immediately outside the lesion8. In previous 

studies11,12 lactate correlated with the apparent diffusion co-efficient (ADC) and 

perfusion values but not NAA, thus confirming that all of these measures are markers 

of the presence of ischemia though not necessarily of tissue fate. In our cohort, brain 

lactate concentration increased from "non-expansion" through “partial expansion", to 

"complete expansion" tissue but the differences were not significant. Therefore a 

larger study is needed to properly assess the role of lactate in prediction of future 

infarction. 
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NAA, a compound nearly exclusively localised in adult neurons decreases in 

ischemic stroke, the level of reduction being related to the severity of ischemia12,14,25-

30. It is considered as a marker of neuronal death but also of tissue dysfunction26,27. 

However, in agreement with previous studies12, we found that NAA concentration did 

not identify “active penumbra” in acute stroke. This is explainable physiologically 

because our metabolite measurements were performed when all analysed tissues 

were radiologically normal on DTI, prior to neuronal death. These results are also 

consistent with previous findings showing that although NAA was decreased in the 

lesion core, its concentration remained normal outside the visible infarct in penumbral 

tissue11,12,16,25,28-30. 

We had hypothesized that decreased brain concentrations of creatine might be 

associated with conversion to infarction because creatine inhibits caspase-mediated 

neuronal death31,32. However, we did not find that 1HMRS-measured creatine 

concentrations identified “tissue at risk”, which might also question its putative 

neuroprotective role31,32. 

This study has several limitations. We were only able to recruit and repeat imaging 

on 31 subjects, a relatively small patient cohort. We have not compared metabolite 

concentrations with cerebral perfusion data which might be helpful to explain the 

pathophysiology background for some of our results. For example, elevated lactate in 

normal appearing voxels immediately outside the infarct would be consistent with a 

perfusion deficit (i.e. DWI/PWI mismatch) as in previous studies12,14.  

We compared the images from different time points voxel-by-voxel manually, a time-

consuming and demanding procedure, and in some patients we did not manage to 

obtain identical admission and follow-up brain sections. Future developments might 

automate this procedure to better compensate for differences in head placement and 
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image location between visits. We did not divide patients according to the time from 

stroke onset to imaging, and this may have influenced the results as tissue 

biochemical processes are much more dynamic than changes in structure. However, 

any subdivision of a 31-subject cohort would not produce reliable statistics. 

Additionally, the method for determining “tissue at risk” should be usable at any time 

from stroke onset. On the other hand, there might be different ranges of brain 

metabolite concentrations indicating the likelihood of conversion to infarction at 

different time points from stroke. Finally, the in vivo 1HMRS has several physical 

limitations, as listed and discussed in detail previously8. 
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Figure legends: 

Figure 1. Examples of 1HMRS spectra from different brain regions defined on DTI of 

an acute ischemic stroke patient: lesion core (0400), infarct expansion area (0398), 

contralateral normal tissue (0561 and 0622). 

Figure 2. Example of spectroscopy voxel categories according to the appearance of 

the brain on DTI and the changes of its appearance on the follow-up DTI. The voxel 

grid numbering on the follow-up is not consistent with the one on the admission 

image. 

Figure 3. Gradual increase in brain choline concentration (mean of patients’ means 

shown) with DTI infarct “expansion” characteristics (p<0.05). 

Figure 4. Brain concentration of metabolites (mean of patients’ means shown) in 

infarct “non-expansion” versus infarct “expansion” voxels (differences were not 

significant for lactate, NAA and creatine: p>0.05). 
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Figure 1. Examples of 1HMRS spectra from different brain regions defined on DTI of 

an acute ischemic stroke patient: lesion core (0400), infarct expansion area (0398), 

contralateral normal tissue (0561 and 0622). 
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Figure 2. 
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Figure 3. Gradual increase in brain choline concentration (mean of patients’ means 

shown) with DTI infarct “expansion” characteristics (p<0.05). 
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Figure 4. Brain concentration of metabolites (mean of patients’ means shown) in 

infarct “non-expansion” (light columns) versus infarct “expansion” (dark columns) 

voxels (differences were not significant for lactate, NAA and creatine). 
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Figure 1. Examples of 1HMRS spectra from different brain regions defined on DTI of 

an acute ischemic stroke patient: lesion core (0400), infarct expansion area (0398), 

contralateral normal tissue (0561 and 0622). 
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Figure 2. 
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Figure 3. Gradual increase in brain choline concentration (mean of patients’ means 

shown) with DTI infarct “expansion” characteristics (p<0.05). 
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Figure 4. Brain concentration of metabolites (mean of patients’ means shown) in 

infarct “non-expansion” (light columns) versus infarct “expansion” (dark columns) 

voxels (differences were not significant for lactate, NAA and creatine). 
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