475 research outputs found

    Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings.

    Get PDF
    The pathophysiology of traumatic brain (TBI) injury involves changes to glucose uptake into the brain and its subsequent metabolism. We review the methods used to study cerebral glucose metabolism with a focus on those used in clinical TBI studies. Arterio-venous measurements provide a global measure of glucose uptake into the brain. Microdialysis allows the in vivo sampling of brain extracellular fluid and is well suited to the longitudinal assessment of metabolism after TBI in the clinical setting. A recent novel development is the use of microdialysis to deliver glucose and other energy substrates labelled with carbon-13, which allows the metabolism of glucose and other substrates to be tracked. Positron emission tomography and magnetic resonance spectroscopy allow regional differences in metabolism to be assessed. We summarise the data published from these techniques and review their potential uses in the clinical setting.This is the final published version. It originally appeared at http://dx.doi.org/10.1007/s11011-014-9628-y

    Huntington's disease mouse models online: high-resolution MRI images with stereotaxic templates for computational neuroanatomy.

    Get PDF
    Magnetic resonance imaging (MRI) has proved to be an ideal modality for non-destructive and highly detailed assessment of structural morphology in biological tissues. Here we used MRI to make a dataset of ex vivo brains from two different rodent models of Huntington's disease (HD), the R6/2 line and the YAC 128 mouse. We are making the whole dataset (399 transgenic HD and wildtype (WT) brains, from mice aged 9-80 weeks) publicly available. These data will be useful, not only to investigators interested in the study of HD, but also to researchers of computational neuroanatomy who may not have access to such large datasets from mouse models. Here we demonstrate a number of uses of such data, for example to produce maps of grey and white matter and cortical thickness. As an example of how the library might provide insights in mouse models of HD, we calculated whole brain grey matter volumes across different age groups with different numbers of cytosine-adenine-guanine (CAG) repeats in a fragment of the gene responsible for HD in humans. (The R6/2 dataset was obtained from an allelic series of R6/2 mice carrying a range of CAG repeat lengths between 109 and 464.) This analysis revealed different trajectories for each fragment length. In particular there was a gradient of decreasing pathology with longer CAG repeat lengths, reflecting our previous findings with behavioural and histological studies. There will be no constraints placed on the use of the datasets included here. The original data will be easily and permanently accessible via the University of Cambridge data repository (http://www.dspace.cam.ac.uk/handle/1810/243361)

    Social Media Ethos: Raising Awareness about Communication Center Programs and Outreach through the Use of Twitter

    Get PDF
    Communication centers often develop a social media presence to engage with audiences about services, programs, and strategies. Twitter, as a popular social media platform, has been adopted by many communication centers. In this article, researchers from the Eastern Kentucky University (EKU) Noel Studio for Academic Creativity share strategies, best practices, and analysis for using Twitter tags, hashtags, and geotags to engage with different publics.

    Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.

    Get PDF
    Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.This work was funded by an MRC studentship and travel to PSMR 2013 was funded by the EU COST action for PET/MR.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.nima.2013.08.07

    Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using (31)P magnetic resonance spectroscopy.

    Get PDF
    The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.We are grateful to all the participants. This work was funded by the Clinical Research Infrastructure Grant. We thank the National Institute for Health Research (NIHR) Cambridge BioResource and S. Nutland, for facilitating the recruitment of the 24 BioResource volunteers. We thank the NIHR Cambridge Biomedical Research Centre for funding the BioResource and we also acknowledge research grants from Addenbrooke's Charitable Trust and the British Society for Pediatric Endocrinology and Diabetes. D.B.S. is supported by the Wellcome Trust [091551] and the U.K. National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. A.S. and the Siemens MAGNETOM 3T Verio scanner are funded by the NIHR via an award to the Cambridge NIHR/Wellcome Trust Clinical Research Facility. A.T. and D.B.D. are supported by the U.K. NIHR Cambridge Biomedical Research Centre. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep19057
    • …
    corecore