264 research outputs found

    Adoptive cell therapy of triple negative breast cancer with redirected cytokine-induced killer cells

    Get PDF
    Cytokine-Induced Killer (CIK) cells share several functional and phenotypical properties of both T and natural killer (NK) cells. They represent an attractive approach for cell-based immunotherapy, as they do not require antigen-specific priming for tumor cell recognition, and can be rapidly expanded in vitro. Their relevant expression of Fc\u3b3RIIIa (CD16a) can be exploited in combination with clinical-grade monoclonal antibodies (mAbs) to redirect their lytic activity in an antigen-specific manner. Here, we report the efficacy of this combined approach against triple negative breast cancer (TNBC), an aggressive tumor that still requires therapeutic options. Different primitive and metastatic TNBC cancer mouse models were established in NSG mice, either by implanting patient-derived TNBC samples or injecting MDA-MB-231 cells orthotopically or intravenously. The combined treatment consisted in the repeated intratumoral or intravenous injection of CIK cells and cetuximab. Tumor growth and metastasis were monitored by bioluminescence or immunohistochemistry, and survival was recorded. CIK cells plus cetuximab significantly restrained primitive tumor growth in mice, either in patient-derived tumor xenografts or MDA-MB-231 cell line models. Moreover, this approach almost completely abolished metastasis spreading and dramatically improved survival. The antigen-specific mAb favored tumor and metastasis tissue infiltration by CIK cells, and led to an enrichment of the CD16a+ subset. Data highlight the potentiality of this novel immunotherapy strategy where a nonspecific cytotoxic cell population can be converted into tumor-specific effectors with clinical-grade antibodies, thus providing not only a therapeutic option for TNBC but also a valid alternative to more complex approaches based on chimeric antigen receptor-engineered cells. List of abbreviations: ACT, Adoptive Cell Transfer; ADCC, Antibody-Dependent Cell-mediated Cytotoxicity; ADP, Adenosine diphosphate; BLI, Bioluminescence Imaging; CAR, Chimeric Antigen Receptor; CIK, Cytokine Induced Killer cells; CTX, Cetuximab; DMEM, Dulbecco\u2019s Modified Eagle Medium; EGFR, Human Epidermal Growth Factor 1; ER, Estrogen; FBS, Fetal Bovine Serum; FFPE, Formalin-Fixed Paraffin-Embedded; GMP, Good Manufacturing Practices; GVHD, Graft Versus Host Disease; HER2, Human Epidermal Growth Factor 2; HRP, Horseradish Peroxidase; IFN-\u3b3, Interferon-\u3b3; IHC, Immunohistochemistry; IL-2, Interleukin-2; ISO, Irrelevant antibody; i.t., intratumoral; i.v., intravenous, mAbs, Monoclonal Antibodies; mIHC, Multiplex Fluorescence Immunohistochemistry; MHC, Major Histocompatibility Complex; NK, Natural Killer; NKG2D, Natural-Killer group 2 member D; NSG, NOD/SCID common \u3b3 chain knockout; PARP, Poly ADP-ribose polymerase; PBMCs, Peripheral Blood Mononuclear Cells; PBS, Phosphate-buffered saline; PDX, Patient-derived xenograft; PR, Progesterone; rhIFN-\u3b3, Recombinant Human Interferon-\u3b3; RPMI, Roswell Park Memorial Institute; STR, Short tandem Repeat; TCR, T Cell Receptor; TNBC, Triple Negative Breast Cancer; TSA, Tyramide Signal Amplification

    Experimental approach for the study of SOFC cathodes

    Get PDF
    The suitability of impedance measurements in Solid Oxide Fuel Cells (SOFCs) is an important concern, especially in case of measuring separately the behaviour of one of the electrode when an overvoltage is applied. In this case a thin electrolyte-supported cell with the RE (Reference Electrode) coplanar with the WE (Working Electrode) is experimentally convenient, but many authors highlighted that incorrect results can be obtained if an inappropriate geometric configuration is used. In this work LSM cathodes ((La0.8Sr0.2)MnO3-x) were investigated in a Yttria-stabilised Zirconia (YSZ) electrolyte-supported cell, using an electrolyte 3 mm thick. Two types of cells were prepared: the first (Cell1) according to the geometric requirements suggested in literature: little WE (diameter 3 mm) aligned to the CE (Counter Electrode) and with equal Rpol(polarisation resistance) and time constant; RE co-planar around the WE and placed at a distance greater than three-electrolyte thicknesses from the WE; the second one (Cell2) equal to Cell1 but with a bigger WE (diameter 8 mm). Impedance measurements were carried out both in two- and three- electrode configuration, at OCV (Open Circuit Voltage) and under applied overpotentials. A preliminary comparison between the results extracted from Cell2 at two- and three- electrodes confirms that a thick electrolyte allows extracting suitable three-electrode impedance results in case of OCV and small overpotentials. On the other side, when an overpotential over 0.2 V is applied, a comparison between Cell1 and Cell2 gives quite different results. The investigation here presented considers also an experimental approach useful for the comprehension of the main phenomena governing the kinetic of the process

    Anti-PSMA CAR-engineered NK-92 Cells: An Off-the-shelf Cell Therapy for Prostate Cancer

    Get PDF
    Prostate cancer (PCa) has become the most common cancer among males in Europe and the USA. Adoptive immunotherapy appears a promising strategy to control the advanced stages of the disease by specifically targeting the tumor, in particular through chimeric antigen receptor T (CAR-T) cell therapy. Despite the advancements of CAR-T technology in the treatment of hematological malignancies, solid tumors still represent a challenge. To overcome current limits, other cellular effectors than T lymphocytes are under study as possible candidates for CAR-engineered cancer immunotherapy. A novel approach involves the NK-92 cell line, which mediates strong cytotoxic responses against a variety of tumor cells but has no effect on non-malignant healthy counterparts. Here, we report a novel therapeutic approach against PCa based on engineering of NK-92 cells with a CAR recognizing the human prostate-specific membrane antigen (PSMA), which is overexpressed in prostatic neoplastic cells. More importantly, the potential utility of NK-92/CAR cells to treat PCa has not yet been explored. Upon CAR transduction, NK-92/CAR cells acquired high and specific lytic activity against PSMA-expressing prostate cancer cells in vitro, and also underwent degranulation and produced high levels of IFN-\u3b3 in response to antigen recognition. Lethal irradiation of the effectors, a safety measure requested for the clinical application of retargeted NK-92 cells, fully abrogated replication but did not impact on phenotype and short-term functionality. PSMA-specific recognition and antitumor activity were retained in vivo, as adoptive transfer of irradiated NK-92/CAR cells in prostate cancer-bearing mice restrained tumor growth and improved survival. Anti-PSMA CAR-modified NK-92 cells represent a universal, off-the-shelf, renewable, and cost-effective product endowed with relevant potentialities as a therapeutic approach for PCa immunotherapy

    Application of electro-fenton process for the treatment of methylene blue

    Get PDF
    The electrochemical removal of an aqueous solution containing 0.25 mM of methylene blue (MB), one of the most important thiazine dye, has been investigated by electro-Fenton process using a graphite-felt cathode to electrogenerate in situ hydrogen peroxide and regenerate ferrous ions as catalyst. The effect of operating conditions such as applied current, catalyst concentration, and initial dye content on MB degradation has been studied. MB removal and mineralization were monitored during the electrolysis by UV\u2013Vis analysis and TOC measurements. The experimental results showed that MB was completely removed by the reaction with \u2022OH radicals generated from electrochemically assisted Fenton\u2019s reaction, and in any conditions the decay kinetic always follows a pseudo-first-order reaction. The faster MB oxidation rate was obtained applying a current of 300 mA, with 0.3 mM Fe2+at T=35 \ub0C. In these conditions, 0.25 mM MB was completely removed in 45 min and the initial TOC was removed in 90 min of electrolysis, meaning the almost complete mineralization of the organic content of the treated solution

    Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-\u3b4- Ba0.5Sr0.5Co0.8Fe0.2O3-\u3b4composite as cathode for solid oxide fuel cells

    Get PDF
    Mixture of La0.6Sr0.4Co0.2Fe0.8O3-\u3b4 and Ba0.5Sr0.5Co0.8Fe0.2O3-\u3b4, was investigated as promising cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The two perovskites possess high catalytic activity for the oxygen reduction (ORR), although some problems related to their chemical and structural stability have still to be overcome in view of improving durability of the cell performance. The achievement of a stable and high-performing composite material is the aim of this study. In principle, chemical equilibrium at the LSCF-BSCF interface may be reached through ions interdiffusion during the sintering process, resulting in the chemical stabilization of the material. The composite-cathode deposited on Ce0.8Sm0.2O2-\u3b4 electrolyte was then investigated by Electrochemical Impedance Spectroscopy (EIS) as a function of temperature, overpotential and time. The results exhibited an interesting electrochemical behavior of the electrode toward oxygen reduction reaction. XRD analysis was performed to detect structural modification during thermal or operation stages and it was found that after the sintering the two starting perovskites were no longer present; a new phase with a rhombohedral La0,4Sr0,6FeO3-type structure (LSF) is formed. An improvement in composite cathode durability has been detected under the considered operating conditions (200 mAcm-2, 700 \ub0C) in comparison with the pure BSCF electrode. The results confirmed this new electrode as promising system for further investigation as IT-SOFC cathode

    Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)

    Get PDF
    In response to the European Union's initiative toward achieving carbon neutrality, the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches, Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution, especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters, using the Aspen Plus software. Through the simulation analysis, it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell, without generating waste liquids containing excessive pollutant concentrations. Specifically, by evaporating 27% of the first current and 10% of the second, it was estimated that 26.2 kg/m(3) and 9.7 kg/m(3) of green hydrogen could be produced, respectively. Considering the EU's target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams, this hydrogen production could meet anywhere from 0.4% to 20% of Italy's projected electricity demand

    A Comprehensive Approach to Improve Performance and Stability of State-of-the- Art Air Electrodes for Intermediate Temperature Reversible Cells: An Impedance Spectroscopy Analysis

    Get PDF
    Solid oxide fuel cells (SOFC) are devices for the transformation of chemical energy in electrical energy. SOFC appear very promising for their very high efficiency, in addition to the capability to work in reverse mode, which makes them suitable for integration in production units powered with renewables. Research efforts are currently addressed to find chemically and structurally stable materials, in order to improve performance stability during long-term operation. In this work, we examine different approaches for improving stability of two state-of-the-art perovskite materials, La0.6Sr0.4Co0.2Fe0.8O3-\uf064 (LSCF) and Ba0.5Sr0.5Co0.8Fe0.2O3-\uf064 (BSCF), very promising as air electrodes. Two different systems are considered: (i) LSCF and BSCF porous electrodes impregnated by a nano-sized La0.8Sr0.2MnO3-\uf064 layer and (ii) LSCF-BSCF composites with the two phases in different volume proportions. The study considers the results obtained by electrochemical impedance spectroscopy investigation, observing the polarisation resistance (Rp) of each system to evaluate performance in typical SOFC operating conditions. Furthermore, the behaviour of polarisation resistance under the effect of a net current load (cathodic) circulating for hundreds of hours is examined, as parameter to evaluate long-term performance stability

    Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines

    Get PDF
    One of the main goals of vaccine research is the development of adjuvants that can enhance immune responses and are both safe and biocompatible. We explored the application of the natural polymer hyaluronan (HA) as a promising immunological adjuvant for protein-based vaccines. Chemical conjugation of HA to antigens strongly increased their immunogenicity, reduced booster requirements, and allowed antigen dose sparing. HA-based bioconjugates stimulated robust and long-lasting humoral responses without the addition of other immunostimulatory compounds and proved highly efficient when compared to other adjuvants. Due to its intrinsic biocompatibility, HA allowed the exploitation of different injection routes and did not induce inflammation at the inoculation site. This polymer promoted rapid translocation of the antigen to draining lymph nodes, thus facilitating encounters with antigen-presenting cells. Overall, HA can be regarded as an effective and biocompatible adjuvant to be exploited for the design of a wide variety of vaccines
    corecore