736 research outputs found

    Hunter S. Thompson and gonzo journalism: A research guide.

    Full text link
    Purpose – The purpose of this paper is to identify and annotate resources related to Hunter S. Thompson and Gonzo Journalism. Design/methodology/approach – Numerous searches are performed in online library catalogs, online databases, and web search engines to identify monographs, journal articles, multimedia titles, and web sites relevant to the topic. Resources located in the searches are then reviewed and annotated by the author and selected for inclusion in the paper based on their relative quality. Findings – A great deal of popular work has been devoted to Thompson and Gonzo Journalism, but also a surprising amount of scholarly analysis. Most primary source material is now available in monographic form, and critical literature is fairly evenly distributed between journal articles and monographs. Search results for Thompson and Gonzo Journalism are often complicated by a number of factors, but these can be compensated for by using search limiters. Research limitations/implications – Because of the sheer volume of work, scholarly and popular, devoted to Thompson and Gonzo Journalism, it is not possible to provide a comprehensive evaluation of all of the materials on the topic. While every attempt is made to be inclusive, the goal of the guide was to include the best sources on the topic, and some resources are reviewed but not included because of quality issues. A number of un-annotated bibliographies are referenced that would be helpful in directing readers to additional resources not included here. Originality/value – Although there are bibliographies of Thompson\u27s work, none are annotated or prepared with academic researchers in mind. In addition, none of the bibliographies located in the course of researching the paper attempted to identify academic journal literature related to Thompson or Gonzo Journalism

    Phase diagram and optical conductivity of the one-dimensional spinless Holstein model

    Full text link
    The effects of quantum lattice fluctuations on the Peierls transition and the optical conductivity in the one-dimensional Holstein model of spinless fermions have been studied by developing an analytical approach, based on the unitary transformation method. We show that when the electron-phonon coupling constant decreases to a finite critical value the Peierls dimerization is destroyed by the quantum lattice fluctuations. The dimerization gap is much more reduced by the quantum lattice fluctuations than the phonon order parameter. The calculated optical conductivity does not have the inverse-square-root singularity but have a peak above the gap edge and there exists a significant tail below the peak. The peak of optical-conductivity spectrum is not directly corresponding to the dimerized gap. Our results of the phase diagram and the spectral-weight function agree with those of the density matrix renormalization group and the exact diagonalization methods.Comment: 9 pages, 4 figures include

    Dielectric response of charge induced correlated state in the quasi-one-dimensional conductor (TMTTF)2PF6

    Full text link
    Conductivity and permittivity of the quasi-one-dimensionsional organic transfer salt (TMTTF)2PF6 have been measured at low frequencies (10^3-10^7 Hz) between room temperature down to below the temperature of transition into the spin-Peierls state. We interpret the huge real part of the dielectric permittivity (up to 10^6) in the localized state as the realization in this compound of a charge ordered state of Wigner crystal type due to long range Coulomb interaction.Comment: 11 pages, 3 .eps figure

    Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain

    Full text link
    As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical phonons. In view of the anorganic spin-Peierls compound CuGeO3 we consider two different mechanisms of spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the anti-adiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is discussed. Comparing the properties of the ground state and of low-lying excitations with exact diagonalization data for the full quantum spin phonon models, good agreement is found especially in the anti-adiabatic regime.Comment: 9 pages, 7 figures included, submitted to Phys. Rev.

    Metal-insulator transition in the one-dimensional Holstein model at half filling

    Full text link
    We study the one-dimensional Holstein model with spin-1/2 electrons at half-filling. Ground state properties are calculated for long chains with great accuracy using the density matrix renormalization group method and extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice fluctuations and that the system remains in a metallic phase with a non-degenerate ground state and power-law electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon frequency small, the system undergoes a transition to an insulating Peierls phase with a two-fold degenerate ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure

    Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model

    Full text link
    An analytical nonadiabatic approach has been developed to study the dimerization gap and the optical absorption coefficient of the Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum phonons. By investigating quantitatively the effects of quantum phonon fluctuations on the gap order and the optical responses in this system, we show that the dimerization gap is much more reduced by the quantum lattice fluctuations than the optical absorption coefficient is. The calculated optical absorption coefficient and the density of states do not have the inverse-square-root singularity, but have a peak above the gap edge and there exist a significant tail below the peak. The peak of optical absorption spectrum is not directly corresponding to the dimerized gap. Our results of the optical absorption coefficient agree well with those of the experiments in both the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR

    Research and Innovation Supporting the Farm to Fork Strategy of the European Commission

    Get PDF
    The EU Think Tank (as part of the FIT4FOOD2030 Coordination andSupport Action) strongly supports the development of the Farm toFork Strategy as a key component of the European Green Deal,recognising the need to transform the food system as a whole

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan
    corecore