8,291 research outputs found
Logarithmic-function generator
Solid-state logarithmic-function generator is compact and provides improved accuracy. Generator includes a stable multivibrator feeding into RC circuit. Resulting exponentially decaying voltage is compared with input signal. Generator output is proportional to time required for exponential voltage to decay from preset reference level to level of input signal
Phase control circuits using frequency multiplications for phased array antennas
A phase control coupling circuit for use with a phased array antenna is described. The coupling circuit includes a combining circuit which is coupled to a transmission line, a frequency multiplier circuit which is coupled to the combining circuit, and a recombining circuit which is coupled between the frequency multiplier circuit and phased array antenna elements. In a doubler embodiment, the frequency multiplier circuit comprises frequency doublers and the combining and recombining circuits comprise four-port hybrid power dividers. In a generalized embodiment, the multiplier circuit comprises frequency multiplier elements which multiply to the Nth power, the combining circuit comprises four-part hybrid power dividers, and the recombinding circuit comprises summing circuits
Phased-array antenna phase control circuit using frequency multiplication
Circuit separates out, from multiplied signals, antenna element signals which have desirable phase angles and feeds them to appropriate antenna elements of phased array. System may be used in either transmitting or receiving mode
Phase interpolation circuits using frequency multiplication for phased arrays
Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system
Genetic heterogeneity of hepatitis E virus in Darfur, Sudan, and neighboring Chad.
The within-outbreak diversity of hepatitis E virus (HEV) was studied during the outbreak of hepatitis E that occurred in Sudan in 2004. Specimens were collected from internally displaced persons living in a Sudanese refugee camp and two camps implanted in Chad. A comparison of the sequences in the ORF2 region of 23 Sudanese isolates and five HEV samples from the two Chadian camps displayed a high similarity (>99.7%) to strains belonging to Genotype 1. But four isolates collected in one of the Chadian camps were close to Genotype 2. Circulation of divergent strains argues for possible multiple sources of infection
Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand
Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time
Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System
We use the density matrix renormalization group (DMRG) to map out the ground
state of a XY-spin chain coupled to dispersionless phonons of frequency . We confirm the existence of a critical spin-phonon coupling for the onset of the spin gap bearing the signature of
a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover
when the spin-Peierls gap is of order . In the classical
regime, , the mean-field parameters are strongly renormalized
by non-adiabatic corrections. This is the first application of the DMRG to
phonons.Comment: 10 pages, 5 figures. To be published in PR
Density Matrix Renormalization Group Study of One-Dimensional Acoustic Phonons
We study the application of the density matrix renormalization group (DMRG)
to systems with one-dimensional acoustic phonons. We show how the use of a
local oscillator basis circumvents the difficulties with the long-range
interactions generated in real space using the normal phonon basis. When
applied to a harmonic atomic chain, we find excellent agreement with the exact
solution even when using a modest number of oscillator and block states (a few
times ten). We discuss the use of this algorithm in more complex cases and
point out its value when other techniques are deficient.Comment: 12 pages. To be published in PRB rapid co
Position Automaton Construction for Regular Expressions with Intersection
Positions and derivatives are two essential notions in the conversion methods from regular expressions to equivalent finite automata. Partial derivative based methods have recently been extended to regular expressions with intersection. In this paper, we present a position automaton construction for those expressions. This construction generalizes the notion of position making it compatible with intersection. The resulting automaton is homogeneous and has the partial derivative automaton as its quotient
Fermi Surface of The One-dimensional Kondo Lattice Model
We show a strong indication of the existence of a large Fermi surface in the
one-dimensional Kondo lattice model. The characteristic wave vector of the
model is found to be , being the density of the
conduction electrons. This result is at first obtained for a variant of the
model that includes an antiferromagnetic Heisenberg interaction between
the local moments. It is then directly observed in the conventional Kondo
lattice , in the narrow range of Kondo couplings where the long
distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure
- …