9,599 research outputs found
Teaching Population Health: Innovations in the integration of the healthcare and public health systems
Population health is a critical concept in healthcare delivery today. Many healthcare administrators are struggling to adapt their organization from fee-for-service to value delivery. Payers and patients expect healthcare leaders to understand how to deliver care under this new model. Health administration programs play a critical role in training future leaders of healthcare organizations to be adaptable and effective in this dynamic environment. The purpose of this research was to: (a) engage current educators of health administration students in a dialogue about the best practices of integrating the healthcare and public health systems; (b) identify the content and pedagogy for population health in the undergraduate and graduate curricula; and (c) discuss exemplar population health curriculum models, available course materials, and curriculum integration options. Authors conducted focus groups of participants attending this educational session at the 2017 annual AUPHA meeting. Qualitative analysis of the focus group discussions was performed and themes identified by a consensus process. Study findings provide validated recommendations for population health in the health administration curriculum. The identification of key content areas and pedagogical approaches serves to inform health educators as they prepare future health administrators to practice in this new era of population health
Quantum Chaos Versus Classical Chaos: Why is Quantum Chaos Weaker?
We discuss the questions: How to compare quantitatively classical chaos with
quantum chaos? Which one is stronger? What are the underlying physical reasons
Pedagogy: How to best teach population health to future healthcare leaders
Our healthcare system is moving from a fee-for-service reimbursement model to one that provides payment for improvements in three areas related to care: quality, coordination, and cost. Healthcare organizations must use a population health approach when delivering care under this new paradigm. Health administration programs play a critical role in training future leaders of healthcare organizations to be adaptable and effective in this dynamic environment. The purpose of this research was to: (1) engage health administration educators in a dialogue about population health and its relevance to healthcare administration education; (2) describe pedagogical methods appropriate for teaching population health skills and abilities needed for successful careers in our healthcare environment; and (3) identify current student learning outcomes that participants can tailor to utilize in their undergraduate and graduate health management courses. Authors conducted focus groups of participants attending this educational session at the 2018 annual AUPHA meeting. Qualitative analysis of the focus group discussions identified themes by a consensus process. Study findings provide validated recommendations for population health in the health administration curriculum. The identification of pedagogical approaches serves to inform educators as they prepare future health administrators to practice in this new era of healthcare delivery
Attributes of Entrepreneurs: Personality Versus Perspective
This presentation will address the general conference topic: what are the attributes of successful entrepreneurs? The presentation will begin with a brief history of the term - Entrepreneur, including its evolution from a descriptor of farmers in the 1800s who faced price-uncertainty when planting crops each season -- to the 20th century definition of an entrepreneur as the instigator of the creative destruction that brings about fundamental industry change. The presentation will briefly review the large body of research that has investigated entrepreneurial personalities -- and conclude with the key point that successful entrepreneurs and successful managers do not differ in personality, but they do differ in perspective. These differences in perspective are very real, can be addressed in the classroom, and can serve as the basis for curriculum development. The presentation will conclude with a discussion of the entrepreneurial process -- the process of moving inventions to the market place as innovations. The elements of the entrepreneurial process will be discussed, showing the key role that an entrepreneurial perspective can play in laying a foundation for success
A Reinvestigation of Moving Punctured Black Holes with a New Code
We report on our code, in which the moving puncture method is applied and an
adaptive/fixed mesh refinement is implemented, and on its preliminary
performance on black hole simulations. Based on the BSSN formulation,
up-to-date gauge conditions and the modifications of the formulation are also
implemented and tested. In this work we present our primary results about the
simulation of a single static black hole, of a moving single black hole, and of
the head-on collision of a binary black hole system. For the static punctured
black hole simulations, different modifications of the BSSN formulation are
applied. It is demonstrated that both the currently used sets of modifications
lead to a stable evolution. For cases of a moving punctured black hole with or
without spin, we search for viable gauge conditions and study the effect of
spin on the black hole evolution. Our results confirm previous results obtained
by other research groups. In addition, we find a new gauge condition, which has
not yet been adopted by any other researchers, which can also give stable and
accurate black hole evolution calculations. We examine the performance of the
code for the head-on collision of a binary black hole system, and the agreement
of the gravitational waveform it produces with that obtained in other works. In
order to understand qualitatively the influence of matter on the binary black
hole collisions, we also investigate the same head-on collision scenarios but
perturbed by a scalar field. The numerical simulations performed with this code
not only give stable and accurate results that are consistent with the works by
other numerical relativity groups, but also lead to the discovery of a new
viable gauge condition, as well as clarify some ambiguities in the modification
of the BSSN formulation.Comment: 17 pages, 8 figures, accepted for publication in PR
Test of Quantum Action for Inverse Square Potential
We present a numerical study of the quantum action previously introduced as a
parametrisation of Q.M. transition amplitudes. We address the questions: Is the
quantum action possibly an exact parametrisation in the whole range of
transition times ()? Is the presence of potential terms beyond
those occuring in the classical potential required? What is the error of the
parametrisation estimated from the numerical fit? How about convergence and
stability of the fitting method (dependence on grid points, resolution, initial
conditions, internal precision etc.)? Further we compare two methods of
numerical determination of the quantum action: (i) global fit of the Q.M.
transition amplitudes and (ii) flow equation. As model we consider the inverse
square potential, for which the Q.M. transition amplitudes are analytically
known. We find that the relative error of the parametrisation starts from zero
at T=0 increases to about at and then decreases to zero
when . Second, we observe stability of the quantum action under
variation of the control parameters. Finally, the flow equation method works
well in the regime of large giving stable results under variation of
initial data and consistent with the global fit method.Comment: Text (LaTeX), Figures(ps
- …