9,599 research outputs found

    La fiction télévisée : structure de la diffusion et de la réception

    Get PDF

    Teaching Population Health: Innovations in the integration of the healthcare and public health systems

    Get PDF
    Population health is a critical concept in healthcare delivery today. Many healthcare administrators are struggling to adapt their organization from fee-for-service to value delivery. Payers and patients expect healthcare leaders to understand how to deliver care under this new model. Health administration programs play a critical role in training future leaders of healthcare organizations to be adaptable and effective in this dynamic environment. The purpose of this research was to: (a) engage current educators of health administration students in a dialogue about the best practices of integrating the healthcare and public health systems; (b) identify the content and pedagogy for population health in the undergraduate and graduate curricula; and (c) discuss exemplar population health curriculum models, available course materials, and curriculum integration options. Authors conducted focus groups of participants attending this educational session at the 2017 annual AUPHA meeting. Qualitative analysis of the focus group discussions was performed and themes identified by a consensus process. Study findings provide validated recommendations for population health in the health administration curriculum. The identification of key content areas and pedagogical approaches serves to inform health educators as they prepare future health administrators to practice in this new era of population health

    Pedagogy: How to best teach population health to future healthcare leaders

    Get PDF
    Our healthcare system is moving from a fee-for-service reimbursement model to one that provides payment for improvements in three areas related to care: quality, coordination, and cost. Healthcare organizations must use a population health approach when delivering care under this new paradigm. Health administration programs play a critical role in training future leaders of healthcare organizations to be adaptable and effective in this dynamic environment. The purpose of this research was to: (1) engage health administration educators in a dialogue about population health and its relevance to healthcare administration education; (2) describe pedagogical methods appropriate for teaching population health skills and abilities needed for successful careers in our healthcare environment; and (3) identify current student learning outcomes that participants can tailor to utilize in their undergraduate and graduate health management courses. Authors conducted focus groups of participants attending this educational session at the 2018 annual AUPHA meeting. Qualitative analysis of the focus group discussions identified themes by a consensus process. Study findings provide validated recommendations for population health in the health administration curriculum. The identification of pedagogical approaches serves to inform educators as they prepare future health administrators to practice in this new era of healthcare delivery

    Attributes of Entrepreneurs: Personality Versus Perspective

    Get PDF
    This presentation will address the general conference topic: what are the attributes of successful entrepreneurs? The presentation will begin with a brief history of the term - Entrepreneur, including its evolution from a descriptor of farmers in the 1800s who faced price-uncertainty when planting crops each season -- to the 20th century definition of an entrepreneur as the instigator of the creative destruction that brings about fundamental industry change. The presentation will briefly review the large body of research that has investigated entrepreneurial personalities -- and conclude with the key point that successful entrepreneurs and successful managers do not differ in personality, but they do differ in perspective. These differences in perspective are very real, can be addressed in the classroom, and can serve as the basis for curriculum development. The presentation will conclude with a discussion of the entrepreneurial process -- the process of moving inventions to the market place as innovations. The elements of the entrepreneurial process will be discussed, showing the key role that an entrepreneurial perspective can play in laying a foundation for success

    A Reinvestigation of Moving Punctured Black Holes with a New Code

    Full text link
    We report on our code, in which the moving puncture method is applied and an adaptive/fixed mesh refinement is implemented, and on its preliminary performance on black hole simulations. Based on the BSSN formulation, up-to-date gauge conditions and the modifications of the formulation are also implemented and tested. In this work we present our primary results about the simulation of a single static black hole, of a moving single black hole, and of the head-on collision of a binary black hole system. For the static punctured black hole simulations, different modifications of the BSSN formulation are applied. It is demonstrated that both the currently used sets of modifications lead to a stable evolution. For cases of a moving punctured black hole with or without spin, we search for viable gauge conditions and study the effect of spin on the black hole evolution. Our results confirm previous results obtained by other research groups. In addition, we find a new gauge condition, which has not yet been adopted by any other researchers, which can also give stable and accurate black hole evolution calculations. We examine the performance of the code for the head-on collision of a binary black hole system, and the agreement of the gravitational waveform it produces with that obtained in other works. In order to understand qualitatively the influence of matter on the binary black hole collisions, we also investigate the same head-on collision scenarios but perturbed by a scalar field. The numerical simulations performed with this code not only give stable and accurate results that are consistent with the works by other numerical relativity groups, but also lead to the discovery of a new viable gauge condition, as well as clarify some ambiguities in the modification of the BSSN formulation.Comment: 17 pages, 8 figures, accepted for publication in PR

    Test of Quantum Action for Inverse Square Potential

    Get PDF
    We present a numerical study of the quantum action previously introduced as a parametrisation of Q.M. transition amplitudes. We address the questions: Is the quantum action possibly an exact parametrisation in the whole range of transition times (0<T<0 < T < \infty)? Is the presence of potential terms beyond those occuring in the classical potential required? What is the error of the parametrisation estimated from the numerical fit? How about convergence and stability of the fitting method (dependence on grid points, resolution, initial conditions, internal precision etc.)? Further we compare two methods of numerical determination of the quantum action: (i) global fit of the Q.M. transition amplitudes and (ii) flow equation. As model we consider the inverse square potential, for which the Q.M. transition amplitudes are analytically known. We find that the relative error of the parametrisation starts from zero at T=0 increases to about 10310^{-3} at T=1/EgrT=1/E_{gr} and then decreases to zero when TT \to \infty. Second, we observe stability of the quantum action under variation of the control parameters. Finally, the flow equation method works well in the regime of large TT giving stable results under variation of initial data and consistent with the global fit method.Comment: Text (LaTeX), Figures(ps
    corecore