7 research outputs found

    Do the more flexible individuals rely more on causal cognition? Observation versus intervention in causal inference in great-tailed grackles (version 5 of this preprint has been peer reviewed and recommended by Peer Community In Ecology [https://doi.org/10.24072/pci.ecology.100076])

    No full text
    Behavioral flexibility, the ability to change behavior when circumstances change based on learning from previous experience, is thought to play an important role in a species’ ability to successfully adapt to new environments and expand its geographic range. It is alternatively or additionally possible that causal cognition, the ability to understand relationships beyond their statistical covariations, could play a significant role in rapid range expansions via the ability to learn faster: causal cognition could lead to making better predictions about outcomes through exerting more control over events. We aim to determine whether great-tailed grackles (Quiscalus mexicanus), a species that is rapidly expanding its geographic range, use causal inference and whether this ability relates to their behavioral flexibility (flexibility measured in these individuals by Logan et al. (2019): reversal learning of a color discrimination and solution switching on a puzzle box). Causal cognition was measured using a touchscreen where individuals learned about the relationships between a star, a tone, a clicking noise, and food. They were then tested on their expectations about which of these causes the food to become available. We found that eight grackles showed no evidence of making causal inferences when given the opportunity to intervene on observed events using a touchscreen apparatus, and that performance on the causal cognition task did not correlate with behavioral flexibility measures. This could indicate that our test was inadequate to assess causal cognition. Because of this, we are unable to speculate about the potential role of causal cognition in a species that is rapidly expanding its geographic range. We suggest further exploration of this hypothesis using larger sample sizes and multiple test paradigms

    How old are chimpanzee communities? Time to the most recent common ancestor of the Y-chromosome in highly patrilocal societies

    No full text
    Many human societies are patrilineal, with males passing on their name or descent group affiliation to their offspring. Y-chromosomes are also passed on from father to son, leading to the simple expectation that males sharing the same surname or descent group membership should have similar Y-chromosome haplotypes. Although several studies in patrilineal human societies have examined the correspondence between Y-chromosome variation and surname or descent group membership, similar studies in non- human animals are lacking. Chimpanzees represent an excellent species for examining the relation- ship between descent group membership and Y-chromosome variation because they live in strongly male philopatric communities that arise by a group-fissioning process. Here we take advantage of recent analytical advances in the calculation of the time to the most recent common male ancestor and a large sample size of 273 Y-chromosome short tandem repeat haplotypes to inform our understanding of the potential ages of eight communities of chimpanzees. We find that the times to the most recent common male ancestor of chimpanzee communities are several hundred to as much as over two thousand years. These genetic estimates of the great time depths of chimpanzee communities accord well with behav- ioral observations suggesting that community fissions are a very rare event and are similar to genetic estimates of the time depth of patrilineal human groups.

    A roadmap for high-throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture

    No full text
    Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.Funding was provided by the Max Planck Society and the President's Strategic Initiative Fund of ASU. T.M.B. is supported by BFU2017‐86471‐P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International Early Career, Obra Social “La Caixa” and Secretaria d'Universitats i Recerca and CERCA Programme del Departament d'Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880) and C.F. is supported by a La Caixa PhD Fellowship

    Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

    No full text
    Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage
    corecore