94 research outputs found

    A new record of Percursaria percursa (Ulvaceae, Ulvales) on the North Island, New Zealand

    Get PDF
    The filamentous green alga Percursaria percursa (Ulvaceae, Ulvales) was recorded for the first time on the North Island of New Zealand at mokoroa Estuary, Tauranga Harbour. This species is previously known within New Zealand from only two records, both from the South Island. In Tauranga Harbour, this species was restricted to anoxic estuarine sediments where mangrove forests had been mulched, and mulchate left in situ. Percursaria percursa was found intertwined with Ulva spp. and Rhizoclonium spp. Surveys of other North and South Island estuaries suggest that this alga, although occurring as part of nuisance green algal blooms in Tauranga Harbour, has only colonized human-impacted locations, and has not yet been observed in natural' estuarine ecosystems in New Zealand. As this species was found intertwined with other mat-forming filamentous green algae, it can easily be misidentified in the field, leading to both over- and under-reporting of species occurrence

    Phylogeography of New Zealandā€™s coastal benthos

    Get PDF
    During the past 30 years, 42 molecular studies have been undertaken in New Zealand to examine the phylogeography of coastal benthic invertebrates and plants. Here, we identify generalities and/or patterns that have emerged from this research and consider the processes implicated in generating genetic structure within populations. Studies have used various molecular markers and examined taxonomic groups with a range of life histories and dispersal strategies. Genetic disjunctions have been identified at multiple locations, with the most frequently observed division occurring between northern and southern populations at the top of the South Island. Although upwelling has been implicated as a cause of this disjunction, oceanographic evidence is lacking and alternative hypotheses exist. A significant negative correlation between larval duration and genetic differentiation (r2 = 0.39, P < 0.001, n = 29) across all studies suggests that larval duration might be used as a proxy for dispersal potential. However, among taxa with short larval durations (<10 days) there was greater variability in genetic differentiation than among taxa with longer pelagic periods. This variability implies that when larval duration is short, other factors may determine dispersal and connectivity among populations. Although there has been little congruence between the phylogeographic data and recognised biogeographic regions, recent research has resolved population subdivision at finer spatial scales corresponding more closely with existing biogeographic classifications. The use of fast-evolving and ecologically significant molecular markers in hypothesis-driven research could further improve our ability to detect population subdivision and identify the processes structuring marine ecosystems

    The Challenges Associated With Connectivity in Ecosystem Processes

    Get PDF
    Developing a framework to quantify the transformation, sequestration or connectivity of energy and matter across habitats is one of the most significant challenges faced by ecologists and resource managers today. However, there are significant challenges associated with quantifying the ecosystem processes that connect and interact across habitats. These processes include the movement of nutrients and energy and can have substantial effects on the structure and dynamics of adjacent habitats and ecosystem functioning. Here, we use a connectivity framework developed for populations to inform our understanding of the challenges associated with connectivity in ecosystem processes, and how specific habitats can contribute to overall ecosystem functioning. The landscape patterns and potential connections between habitats in terms of material storage or transformation have important implications for understanding how fragmentation and degradation of habitats in ecosystems will influence broad-scale ecosystem function

    Conserving threatened marine species and biodiversity requires 40% ocean protection

    Get PDF
    Global prioritisation of where to locate Marine Protected Areas (MPA) has not considered both a comprehensive range of measures of biodiversity as well as threatened species distributions. Using maps of 974 threatened species ranges, we found that areas of high threatened species richness are distributed throughout the world's coastal and continental shelf areas as well as in offshore regions and well-known biodiversity hotpots. We then assessed whether Representative Biodiversity Areas (RBAs), the top 30% of the global ocean prioritised based on holistic measures of biodiversity from genes to ecosystems, adequately cover the ranges of threatened species. Implementing RBAs could protect a minimum of 30% of most threatened species ranges, but 26 threatened species have distributions in areas with poor overlap with biodiversity priorities. Using decision support software we found that a minimum of 40% of the ocean is required to adequately protect over 68% of all aspects of biodiversity and 30% of IUCN Red List threatened species ranges. Priority areas outside Exclusive Economic Zones (39%) demonstrate the importance of the High Seas (59% of the global oceans) to biodiversity conservation. Recognising the uncertainties inherent in our approach due to the limited proportion of taxa assessed by the IUCN Red List, we used an uncertainty analysis to support our findings. We found that currently, only 2.5% of priority areas are within marine reserves, highlighting the urgent need for increased protection of important areas for biodiversity and threatened species across EEZs and the High Seas.publishedVersio

    Where marine protected areas would best represent 30% of ocean biodiversity

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Elsevier in Biological Conservation on 02/04/2020.Available online: https://www.sciencedirect.com/science/article/pii/S0006320719312182?via%3DihubThe IUCN (the International Union for Conservation of Nature) World Conservation Congress called for the full protection of 30% of each marine habitat globally andat least 30% of all the ocean. Thus, we quantitatively prioritized the top 30% areas for Marine Protected Areas (MPAs) globally using global scale measures ofbiodiversity from the species to ecosystem level. The analysis used (a) Ecosystems mapped based on 20 environmental variables, (b) four Biomes (seagrass, kelp,mangrove, and shallow water coral reefs) plus seabed rugosity as a proxy for habitat, and (c) species richness within each biogeographic Realm (indicating areas ofspecies endemicity), so as to maximise representivity of biodiversity overall.We found that the 30% prioritized areas were mainly on continental coasts, island arcs, oceanic islands, the southwest Indian Ridge, the northern Mid-AtlanticRidge, the Coral Triangle, Caribbean Sea, and Arctic Archipelago. They generally covered 30% of the Ecosystems and over 80% of the Biomes. Although 58% of theareas were within countries Exclusive EconomicZones(EEZ), only 10% were in MPAs, and < 1% in no-take MPAs (IUCN category Ia). These prioritized areas indicatewhere it would be optimal to locate MPAs for recovery of marine biodiversity within and outside country's EEZ. Our results thus provide a map that will aid bothnational and international planning of where to protect marine biodiversity as a whole.acceptedVersio

    Spatial and temporal variation in the predicted dispersal of marine larvae around coastal Aotearoa New Zealand

    Get PDF
    IntroductionPatterns of larval dispersal in the marine environment have many implications for population dynamics, biodiversity, fisheries, ecosystem function, and the effectiveness of marine protected areas. There is tremendous variation in factors that influence the direction and success of marine larval dispersal, making accurate prediction exceedingly difficult. The key physical factor is the pattern of water movement, while two key biological factors are the amount of time larvae spend drifting in the ocean (pelagic larval duration - PLD) and the time of the year at which adult populations release larvae. Here, we assess the role of these factors in the variation of predicted larval dispersal and settlement patterns from 15 locations around Aotearoa New Zealand.MethodsThe Moana Project Backbone circulation model paired with OpenDrift was used to simulate Lagrangian larval dispersal in the ocean with basic vertical control across four differing PLD groups (7, 14, 30, and 70 days) for each of twelve months. ResultsConsiderable variation was observed in the pattern of particle dispersal for each major variable: release location, PLD group, and the month of release. As expected, dispersal distances increased with PLD length, but the size of this effect differed across both release location and month. Increased and directional particle dispersal matched some expectations from well-known currents, but surprisingly high self-recruitment levels were recorded in some locations.DiscussionThese predictions of larval dispersal provide, for the first time, an empirical overview of coastal larval dispersal around Aoteaora New Zealandā€™s main islands and highlight potential locations of ā€œbarriersā€ to dispersal. This dataset should prove valuable in helping predict larval connectivity across a broad range of species in this environment for diverse purposes

    The Challenge of Implementing the Marine Ecosystem Service Concept

    Get PDF
    The concept of ecosystem services has gained traction as a means of linking societal benefits to the underlying ecology and functioning of ecosystems, and is now frequently included in decision-making and legislation. Moving the ecosystem service concept from theory into practice is now crucial. However, advancements in this area of research differ by ecosystem type, and marine systems lag significantly behind terrestrial counterparts in terms of understanding, implementation, and number of studies. In this paper we explore several reasons why ecosystem service research has been limited in marine systems and we outline the challenges that hinder progress. Marine systems suffer from a scarcity of spatial data relative to terrestrial counterparts. In terrestrial systems the spatial patterns of land-use/land-cover (LULC) are relatively straightforward to access via satellite and have been used as proxy indicators of service provisions. In contrast, remote sensing tools used to study the surface of the Earth are much less effective at capturing images of the seabed, and by extension marine habitats. Marine waters and their constituents are also frequently driven great distances by winds, tides, and currents. This creates a challenge for management as the identification and protection of areas where ecosystem services are exploited is not necessarily sufficient to ensure sustained service delivery. Further complications arise from the three-dimensional uses of marine systems, incorporating activities that use the sea surface, the water column and the benthic habitats below. Progress is being made as technological advancements are resulting in the acquisition of spatial data at faster rates and higher resolutions than previously possible. There is a growing capacity to map, model and value an increasing number of services with initiatives such as InVEST or principle-based modeling. We suggest that awareness is needed around the limited progress in marine systems as this could affect the way we value the biosphere and the relative proportion between biomes

    Quantifying macrodetritus fluxes from a small temperate estuary

    Get PDF
    Empirical measurements of estuary-to-coast material fluxes usually exclude the fraction of primary production that is exported as macrodetritus (marine plant litter), potentially leaving a gap in our understanding of the role of estuaries as outwelling systems. To address this gap, we sampled water and suspended material seasonally from the mouth of Pepe Inlet, Tairua Estuary, New Zealand. From samples collected hourly over 24 h, we calculated the lateral tidal fluxes (import, export, net flux) of macrodetritus, particulate and dissolved forms of nitrogen (N) and phosphorus (P). Annually, the inlet was a net exporter of N and P (5145 and 362 kg respectively). However, macrodetritus accounted for 87%). Nevertheless, seasonal pulses in the source and supply of macrodetritus may have consequences for the temporal scales over which this resource subsidy affects receiving ecosystems (e.g. intertidal sandflats). These mensurative investigations are useful to inform estuarine nutrient budgets that quantify the ecosystem services provided by temperate estuaries (e.g. contribution to fisheries food webs)

    Designating Spatial Priorities for Marine Biodiversity Conservation in the Coral Triangle

    Get PDF
    To date, most marine protected areas (MPAs) have been designated on an ad hoc basis. However, a comprehensive regional and global network should be designed to be representative of all aspects of biodiversity, including populations, species, and biogenic habitats. A good exemplar would be the Coral Triangle (CT) because it is the most species rich area in the ocean but only 2% of its area is in any kind of MPA. Our analysis consisted of five different groups of layers of biodiversity features: biogenic habitat, species richness, species of special conservation concern, restricted range species, and areas of importance for sea turtles. We utilized the systematic conservation planning software Zonation as a decision-support tool to ensure representation of biodiversity features while balancing selection of protected areas based on the likelihood of threats. Our results indicated that the average representation of biodiversity features within the existing MPA system is currently about 5%. By systematically increasing MPA coverage to 10% of the total area of the CT, the average representation of biodiversity features within the MPA system would increase to over 37%. Marine areas in the Halmahera Sea, the outer island arc of the Banda Sea, the Sulu Archipelago, the Bismarck Archipelago, and the Malaita Islands were identified as priority areas for the designation of new MPAs. Moreover, we recommended that several existing MPAs be expanded to cover additional biodiversity features within their adjacent areas, including MPAs in Indonesia (e.g., in the Birds Head of Papua), the Philippines (e.g., in the northwestern part of the Sibuyan Sea), Malaysia (e.g., in the northern part of Sabah), Papua New Guinea (e.g., in the Milne Bay Province), and the Solomon Islands (e.g., around Santa Isabel Island). An MPA system that covered 30% of the CT would include 65% of the biodiversity features. That just two-thirds of biodiversity was represented by one-third of the study area supports calls for at least 30% of the ocean to be in no-fishing MPA. This assessment provides a blueprint for efficient gains in marine conservation through the extension of the current MPA system in the CT region. Moreover, similar data could be compiled for other regions, and globally, to design ecologically representative MPAs

    Assessing Benthic Responses to Fishing Disturbance Over Broad Spatial Scales That Incorporate High Environmental Variation

    Get PDF
    Marine benthic habitats are modified by a number of human-related disturbances. When these disturbances occur at large scales over areas of high environmental variability, it is difficult to assess impacts using metrics such as species richness or individual species distributions because of varying species-specific responses to environmental drivers (e.g., exposure, sediment, temperature). Impact assessment can also be problematic when assessed at broad spatial scales because of regional heterogeneity of species pools. Even when effects on individual species can be detected, it is difficult to upscale from individual species to ecosystem scale effects. Here, we use a functional group approach to assess broad scale patterns in ecological processes with respect to fishing and environmental drivers. We used data from field surveys of benthic communities from two large, widely separated areas in New Zealandā€™s EEZ (Chatham Rise and Challenger Plateau). We assigned 828 taxonomic units (most identified to species) into functional groups related to important ecosystem processes and likely sensitivity to, and recovery from, fishing disturbance to the seafloor. These included: opportunistic early colonists; substrate stabilisers (e.g., tube mat formers); substrate destabilisers; shell hash-creating species; emergent epifauna; burrowers; and predators and scavengers. Effects of fishing disturbance on benthic functional composition were observed, even at this broad spatial scale. Responses varied between functional groups, with some being tolerant of fishing impacts and others showing rapid declines with minimal fishing effort. The use of a functional group approach facilitates assessment of impacts across regions and species, allowing for improved generalisations of impacts to inform management and decision making
    • ā€¦
    corecore