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Abstract  During the past 30 years, 42 molecular 
studies have been undertaken in New Zealand to 
examine the phylogeography of coastal benthic 
invertebrates and plants. Here, we identify 
generalities and/or patterns that have emerged 
from this research and consider the processes 
implicated in generating genetic structure within 
populations. Studies have used various molecular 
markers and examined taxonomic groups with 
a range of life histories and dispersal strategies. 
Genetic disjunctions have been identified at multiple 
locations, with the most frequently observed division 
occurring between northern and southern populations 
at the top of the South Island. Although upwelling 
has been implicated as a cause of this disjunction, 
oceanographic evidence is lacking and alternative 
hypotheses exist. A significant negative correlation 
between larval duration and genetic differentiation 
(r2 = 0.39, P < 0.001, n = 29) across all studies 
suggests that larval duration might be used as a 
proxy for dispersal potential. However, among 
taxa with short larval durations (<10 days) there 

was greater variability in genetic differentiation 
than among taxa with longer pelagic periods. This 
variability implies that when larval duration is 
short, other factors may determine dispersal and 
connectivity among populations. Although there has 
been little congruence between the phylogeographic 
data and recognised biogeographic regions, recent 
research has resolved population subdivision at 
finer spatial scales corresponding more closely 
with existing biogeographic classifications. The 
use of fast-evolving and ecologically significant 
molecular markers in hypothesis-driven research 
could further improve our ability to detect population 
subdivision and identify the processes structuring 
marine ecosystems.

Keywords  genetic differentiation; genetic 
subdivision; gene flow; larval transport; population 
connectivity; biogeography

Introduction

Determining the sources of new recruits to a 
population is fundamental to ecological research 
in marine benthic systems. However, determining 
recruitment pathways has been difficult for many 
taxa as adults are largely sedentary and dispersal is 
achieved during a pelagic larval stage (Grantham et 
al. 2003). Although it is widely acknowledged that 
pre-settlement pelagic processes play an important 
role in structuring benthic communities (e.g., 
Underwood 1981; Menge 1991; Gaines & Bertness 
1993), the pelagic component of larval life histories 
remains largely unknown. Numerous synergistic 
factors including ocean currents and larval duration, 
behaviour and mortality can determine patterns of 
larval dispersal (Roughgarden et al. 1985, 1988; 
Menge 1991; Cowen & Sponaugle 2009). These 
patterns govern exchange between populations, 
influencing local and metapopulation dynamics, 
community structure, genetic diversity and the 
resilience of populations to human exploitation 
(Hastings & Harrison 1994; Botsford et al. 2001; 
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Cowen et al. 2007). Understanding population 
connectivity is therefore essential for the effective 
management of species and ecosystem resources 
(Botsford et al. 2001; Palumbi 2003; Levin 2006). 
Previously, it was considered that few barriers to 
dispersal existed in the marine environment (Mayr 
1954; Scheltema 1986). This paradigm was retained 
for many years, in part because of the difficulties 
associated with tracking larval dispersal (Levin 1990; 
Palumbi et al. 2003). With the advent and subsequent 
development of molecular techniques it is now 
possible to estimate rates of larval migration between 
populations, as a population’s genetic structure is 
likely to reflect patterns of dispersal (Wright 1951; 
Neigel 1997). Molecular studies have produced 
conflicting evidence as to whether wide-ranging 
dispersal and high connectivity are pervasive among 
marine populations. For example, some studies have 
shown high levels of connectivity over thousands 
of kilometres (Takabayashi et al. 2003; Cassista & 
Hart 2007) whereas in others, boundaries have been 

identified between genetically distinct populations 
allowing the location of dispersal barriers to be 
inferred (e.g., Bird et al. 2007; Gruenthal & Burton 
2008). These results suggest that larval duration on 
its own may not be a suitable proxy for predicting 
dispersal potential (Bay et al. 2006).
	 In New Zealand, marine phylogeographic studies 
have been used to examine meta-population dynamics, 
larval transport and the processes that determine 
connectivity among populations. Stretching 2700 km 
from the subtropical Kermadec islands (29°S) to 
the subantarctic Auckland and Campbell islands 
(50°S and 52°S; respectively), New Zealand is an 
archipelago of over 700 islands (Fig. 1; Laing & 
Chiswell 2003). The oceanography of this region is 
complex as the archipelago straddles the subtropical 
convergence, the division between subtropical water 
approaching from the north and subantarctic water 
in the south (Heath 1982; de Lange et al. 2003; 
Laing & Chiswell 2003). Major current systems 
divide as they reach the continental shelf creating 

Fig. 1  New Zealand’s ma-
jor coastal current systems and 
boundaries between water masses. 
DUC, D’Urville Current; EAC, 
East Auckland Current; ECC, East 
Cape Current; ECE, East Cape 
Eddy; NCE, North Cape Eddy; 
SOC, Southland Current; SAW, 
Subantarctic water; STC, Subtropi-
cal Convergence; STW, Subtropi-
cal water; TAC, Tasman Current; 
TF, Tasman Front; WAC, West 
Auckland Current; WAE, Wairara-
pa Eddy; WCC, Wairarapa Coastal 
Current; WEC, Westland Current 
(redrawn after Heath (1982) and 
Carter et al. (1998)). 40°S

35°S

45°S

175°E 175°W165°E

50°S

30 S°

WAE

ECE

EC
C

STC

Nor
th Is

land

Sou
th Is

land

EAC

WEC

TAC

WAC

SO
C

W
CCDUC

East Cap
e

Fi
or
dla
nd

Stewart Island

Cook Strait

Auckland Islands

Campbell Island

Kermadec Islands

TF NCE

SAW

STW

STC

Chatham Rise



1011Ross et al.—Phylogeography of New Zealand’s coastal benthos

numerous smaller currents and eddies. Coastal 
currents are further modified through interactions 
with topography (e.g., headlands, islands, and 
canyons) and temporally variable wind, waves, and 
tide. This complexity makes it difficult to predict 
how oceanographic and physical features might 
influence connectivity among coastal populations 
of benthic marine organisms.
	 Here we review peer-reviewed journal articles, 
graduate theses, and government reports in which 
the relationship between genetic structure of New 
Zealand’s coastal flora and fauna and geographic 
locations has been examined. Specifically, we 
focused on benthic invertebrates and plants and 
excluded studies of recently introduced species 
(e.g., Smith et al. 1986) as their genetic structure 
is likely to have been influenced by their method of 
introduction (Provan et al. 2005; Rius et al. 2008). We 
identified generalities and/or patterns in population 
structure and the processes implicated in generating 
subdivision, examine the relationship between larval 
duration and population differentiation and contrast 
current knowledge of population subdivision with 
biogeographic classification schemes. 

New Zealand literature
Forty-two phylogeographic studies, published 
between 1980 and 2008 were included in the 
review (Table 1). Where more than one species 
was included in a single publication, each was 
considered separately. During this period, there has 
been an increase in the number of studies using 
molecular techniques as well as in the types and 
number of molecular markers used (Fig. 2, Table 
1). Early studies used allozyme electrophoresis, 
and later used sequencing and fragment analysis of 
mitochondrial and nuclear DNA as these techniques 
became increasingly available (for descriptions of 
markers and their uses in molecular ecology see 
Wan et al. 2004; DeYoung & Honeycutt 2005; Anne 
2006). As methods have developed, concerns about 
the comparability of genetic data have arisen where 
analyses of different markers in a single species (e.g., 
green-lipped mussel Perna canaliculus) produced 
conflicting results (Smith 1988; Gardner et al. 1996; 
Apte & Gardner 2001, 2002). However, recent 
studies have produced more consistent results (Apte 
& Gardner 2002; Apte et al. 2003; Star et al. 2003). 
It is possible that chance effects associated with the 
low numbers of populations and individuals typically 
sampled in early population genetic studies (Table 
1) may have contributed to the initial variability in 
phylogeographic patterns detected. 

	 Twenty-nine species were covered in these 
studies, the majority of which were crustaceans, 
echinoderms, or molluscs. The taxa studied have a 
range of dispersal strategies and include brooding 
species that lack a dispersive larval stage (e.g., the 
anemone Actinia tenebrosa), species with pelagic 
larval durations (PLDs) ranging from as little as a few 
days (e.g., the limpet Cellana ornata) to greater than 
12 months (e.g., the rock lobster Jasus edwardsii), 
and one plant (the seagrass Zostera muelleri) able 
to undergo dispersal in its adult form (Table 1). 

Panmictic taxa
Eight studies of seven taxa found no significant 
genetic subdivision (Table 1) suggesting that for 
these species, gene flow is high, barriers to dispersal 
are absent, and that populations can be considered 
as part of a single interbreeding unit. For the rock 
lobsters J. edwardsii and J. verreauxi with PLDs of 
8–15 months and the gastropod Nerita atramentosa 
with a PLD of 5–6 months, this lack of genetic 
structure was expected (Smith et al. 1980; Brasher 
et al. 1992; Ovenden et al. 1992; Waters et al. 2005). 
For species with extended PLDs, larval transport 
across great distances is expected to connect distant 
populations (Mayr 1954; Scheltema 1986) despite 
temporal variability in coastal oceanography or the 
occurrence of short-lived hydrological dispersal 
barriers (e.g., Roberts & Paul 1978). Conversely, 
for the bivalve Austrovenus stutchburyi and the 
echinoderm Coscinasterias muricata, both with 
shorter PLDs (2–5 weeks), the lack of population 
subdivision was unexpected (Lidgard 2001; Waters 
& Roy 2003). 

North-south population differentiation
The most prominent pattern in the reviewed studies 
was that of genetically distinct northern and southern 
populations. This pattern was detected in 16 of the 
26 studies in which populations were sampled at 
a New Zealand-wide scale (5–12° latitude; Table 
1). On the west coast of New Zealand, the location 
of this divergence has been consistently reported 
at the top of the South Island or in the vicinity 
of Cook Strait (e.g., Apte et al. 2003; Stevens & 
Hogg 2004; Ayers & Waters 2005; Goldstien et al. 
2006; Veale 2007; Jones et al. 2008), whereas on 
the east coast the location of divergence has been 
more variable. A division was detected in the East 
Cape region (Fig. 1) for two species of estuarine 
amphipod (Paracorophium lucasi and P. excavatum) 
(Stevens & Hogg 2004), whereas for other taxa 
the demarcation between northern and southern 
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populations has been located in the vicinity of Cape 
Campbell (Fig. 3) on the east coast of the South 
Island (e.g., limpet (C. ornata, Goldstien et al. 2006), 
green-lipped mussel (P. canaliculus, Apte & Gardner 
2002; Apte et al. 2003), cushion star (Patiriella 
regularis, Waters & Roy 2004; Ayers & Waters 
2005), brittle star (Amphipholis squamata, Sponer 
& Roy 2002) and snakeskin chiton (Sypharochiton 
pelliserpentis, Veale 2007)). Divergence between 
northern and southern populations was also detected 
in some Fiordland-focused studies that included 
North Island outgroups (e.g., Perrin 2002; Skold et 
al. 2003; Perrin et al. 2004). However, owing to the 
small number of northern populations included in 
these studies, no conclusions could be made about 
the location of genetic breaks occurring between 
northern and southern populations. 
	 Where a genetic division between northern and 
southern populations occurs in the upper South Island, 
upwelling has often been implicated as a barrier to 
larval dispersal (Apte & Gardner 2002; Star et al. 
2003; Waters & Roy 2004; Ayers & Waters 2005; 
Veale 2007). It has been hypothesised that upwelling 
on the northern east and west coasts of the South 
Island could cause larvae passing into these regions 
to be advected from coastal habitats into offshore 
waters where they will perish. Upwelling as a barrier 
to population connectivity and larval dispersal has 
been studied in a number of systems, particularly 
in areas with well characterised oceanography such 
as Chile (Poulin et al. 2002; Narvaez et al. 2006), 
the west coast of the United States (Roughgarden et 
al. 1988; Hohenlohe 2004), the Iberian Peninsula, 

Portugal (Santos et al. 2007), and the west coast of 
Africa (Lett et al. 2007). In these areas, which are 
dominated by major current systems (i.e., Humbolt, 
California, Canary, and Benguela currents), upwelling 
occurs seasonally and once established may persist 
for months (Largier et al. 1993). Even in these 
systems, there is limited evidence to suggest that 
upwelling isolates coastal populations (Hohenlohe 
2004; Shanks & Brink 2005; Narvaez et al. 2006; 
Lett et al. 2007; Johansson et al. 2008). There is, 
however, evidence to suggest that the effects of 
upwelling on larval transport are strongly modified 
by larval behaviour (Poulin et al. 2002; Shanks & 
Brink 2005). Shanks & Brink (2005) demonstrated 
that vertical positioning could determine the cross-
shelf transport of larvae under upwelling conditions. 
They observed that the larvae of some species were 
transported offshore during upwelling as predicted, 
whereas others were moved shoreward or maintained 
position relative to the coast despite experiencing the 
same cross-shelf currents (Shanks & Brink 2005). 
Consequently, in the absence of detailed sampling, 
upwelling should not be invoked as a cause of 
variation in larval settlement patterns. 
	 In New Zealand, weather patterns are highly 
variable and wind-driven oceanographic features 
such as upwellings also vary at equivalent time scales 
(Heath 1972; de Lange et al. 2003; Laing & Chiswell 
2003). Throughout any given breeding season, 
particularly where spawning duration is protracted, 
it is likely that larvae will experience both upwelling 
and downwelling conditions. Accordingly, upwelling 
alone is unlikely to be responsible for the genetic 
divergence observed across this region. Detailed 
small spatial scale studies of oceanography and 
phylogeography and a more complete understanding 
of the consequences of larval behaviour are required 
if this hypothesis is to be adequately tested.
	 An alternative to upwelling as the cause of north-
south subdivision on the east coast is the East Cape 
Current (ECC) and Wairarapa Eddy. The ECC flows 
from East Cape down the east coast of the North 
Island to approximately 42°S—the same latitude 
as the upwelling at the top of the South Island (cf. 
Fig. 1 and 3). At the southern limit of its flow, the 
ECC splits with some of its flow proceeding to the 
north-east while the remainder flows into and along 
the subtropical convergence (de Lange 2003; Laing 
& Chiswell 2003; Chiswell 2005). The transport of 
larvae from northern to southern populations on the 
east coast could be prevented if larvae carried south 
by the ECC are advected either back to the north or 
out across the Chatham Rise. Chiswell & Roemmich 

Fig. 2  Number of phylogeographic studies of the New 
Zealand coastal benthos conducted between 1980 and 2008 
and molecular techniques used. AFLP, amplified fragment 
length polymorphisms; RAPD, random amplification of 
polymorphic DNA; mtDNA, mitochondrial DNA. 
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(1998) simulated larval trajectories around the East 
Cape region and suggested that if larvae were 
passively drifting they could potentially be retained 
in the Wairarapa and East Cape eddies for up to 2–3 
years. For taxa with short pelagic larval durations 
(e.g., Cellana spp., PLD 3–11 days; Goldstien et 
al. 2006), retention within an eddy even for a short 
time would probably be terminal as larvae reaching 
settlement maturity would not reach the required 
habitat within their larval life stage. Conversely, for 
J. edwardsii larvae which have a pelagic duration of 
over 12 months (Booth 1994), and for other species 
with long-lived pelagic larvae, retention in eddies or 
gyres could act to promote local recruitment. 
	 On the west coast of the South Island there is 
little data to support the hypothesis that upwelling 
is a barrier to gene flow and a cause of divergence 
between northern and southern populations. The 
Westland Current generally flows in a northerly 
direction along the west coast of the South Island 
before merging with the D’Urville Current and 
moving into the South Taranaki Bight (Fig. 3; Heath 
1982; de Lange et al. 2003; Laing & Chiswell 2003). 
The D’Urville Current sweeps into Cook Strait from 
the northwest, mixing with water from the Southland 
and East Cape currents before moving eastwards 

across Cook Strait and around Cape Palliser (Heath 
1982). Upwelling does occur on the northwest 
coast between Kahurangi Point and Cape Farewell 
(Fig. 3), but is temporally variable in intensity 
and occurrence (Shirtcliffe et al. 1990). During 
upwelling, water is advected offshore with much of it 
moving northeast and into the D’Urville Current then 
Cook Strait (Bradford-Grieve et al. 1993). Rather 
than preventing the transport of larvae between 
southwestern populations and populations north 
of Cape Farewell, this hydrology may promote the 
mixing of larvae from the greater Cook Strait region, 
although the degree of larval transport likely varies 
with larval behaviour and PLD (Bradford-Grieve et 
al. 1993; Shanks & Brinks 2005). Indications of this 
mixing can be found in the genetic makeup of some 
Cook Strait populations where both northern and 
southern haplotypes are present (e.g., Veale 2007) 
or where differentiation among central New Zealand 
populations is small (e.g., Waters & Roy 2004). 

East-west population differentiation
Of the 15 studies in which multiple populations 
were sampled on both east and west coasts of the 
North and South islands, divergent east and west 
coast populations were detected in four studies of 
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Fig. 3  The Cook Strait region 
(New Zealand) with major cur-
rents and locations of interest 
indicated (redrawn after Heath 
(1982) and Carter et al. (1998)). 
Dotted lines south of Cook Strait 
indicate the location of upwelling 
zones implicated in preventing 
larval transport between northern 
and southern populations (Apte & 
Gardner 2002).  
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three species. These include the amphipod P. lucasi 
(Schnabel et al. 2000; Stevens & Hogg 2004) and 
the snakeskin chiton S. pelliserpentis (Veale 2007), 
in which North Island populations were distinct 
between coasts, and the seagrass Z. muelleri (Jones 
et al. 2008), in which distinct east and west coast 
populations were detected in both the North and 
South islands. 
	 Upwelling at the top of the North Island (Roberts 
& Paul 1978) was suggested as a possible impediment 
for gene flow between coasts (Veale 2007). However, 
without detailed knowledge of local oceanography 
and larval characteristics, this kind of hypothesis 
should be treated with caution (Shanks & Brink 
2005). It has also been hypothesised that east-west 
differentiation in the North Island is a consequence of 
the significant geological changes that New Zealand 
has undergone over the last 65 million years (Stevens 
& Hogg 2004). Marine intrusions during the upper 
Miocene and Pliocene may have turned what is 
now the North Island into an archipelago of smaller 
ephemeral islands (Fleming 1979; Stevens et al. 
1995). East-west migration among populations would 
have been possible until sea level dropped, creating 
a barrier that physically separated populations. The 
few examples of east-west differentiation may relate 
to the timing with which species arrived in New 
Zealand and whether their population structure has 
been influenced by geological processes (Lamb 
& Avise 1992; Knowlton et al. 1993; Stevens & 
Hogg 2004). Alternatively, differences in population 
subdivision may relate to species-specific differences 
in ability to disperse across hydrodynamic features 
such as the north coast upwelling as suggested by 
Veale (2007) and/or the requirement for specific 
settlement habitats (e.g., estuaries; Stevens & Hogg 
2004; Jones et al. 2008).  

Small-scale population genetic structure
Few studies have detected population structure either 
within a region or along stretches of continuous 
coast. Where reported, it has largely been in studies 
designed specifically to test hypotheses at small 
spatial scales, with the majority being conducted 
in Fiordland. An exception is Veale’s (2007) New 
Zealand-wide study in which microsatellite loci 
were used to examine the population genetics of 
the Waratah anemone A. tenebrosa. Seven regional 
A. tenebrosa subpopulations were described and an 
isolation-by-distance relationship among populations 
was attributed to the reproductive characteristics 
of the species (Veale 2007). As most comparable 
studies have used mtDNA, it is not possible to 

determine whether the finer-scale resolution 
attained in this study resulted from differences in the 
molecular marker used or life history characteristics 
of A. tenebrosa. Smith & McVeagh (2006) also 
used microsatellite markers and found significant 
geographic differentiation among populations of the 
abalone Haliotis iris. However, as only four locations 
were sampled, it was not possible to determine the 
spatial scale at which differentiation occurred. 
	 Fiordland in the southwestern corner of the South 
Island is an ideal system for examining population 
connectivity as each fjord constitutes a discrete 
habitat isolated by geography and hydrology 
(Stanton & Pickard 1981, Lamare 1998, Gibbs 
2001). As a consequence of extremely high rainfall 
in the region (up to 7 m per year), the fjords have 
a low salinity surface layer and two layer estuarine 
circulation (Stanton & Pickard 1981; Gibbs 2001). 
This circulation determines the degree to which 
larvae are physically transported within and among 
fjords (Lamare 1998; Metaxas 2001; Bilton et al. 
2002; Wing et al. 2003).  Depending on the life 
history characteristics of larvae, such as vertical 
positioning in the water column and tolerance to the 
low salinity outflowing surface waters, it is possible 
that larvae will be retained within the fjords, limiting 
connectivity among fjord populations (Lamare 
1998).
	 Nine studies have examined phylogeography 
within Fiordland, detecting genetic differentiation 
at very small spatial scales (<50 m) for some 
species (e.g., the coral Antipathes fiordensis; Miller 
1998), whereas other species such as the snake star 
(Astrobrachion constrictum; Steele 1999) with similar 
dispersal potential (i.e., PLD) showed little evidence 
of restricted larval exchange. Although all but one 
of these studies detected population subdivision 
either within or among the fjords, interpretation 
of phylogeographic patterns is complicated. For 
example, Skold et al. (2003) detected significant 
variation among fjord populations of Coscinasterias 
muricata using allozyme electrophoresis, but 
found no correlation between genetic structure and 
geographic distribution. In contrast, Perrin et al. 
(2004) analysed mtDNA of the same species at the 
same sites and detected an isolation-by-distance 
relationship among populations in the northern fjords 
and restricted gene flow between southern fjords 
particularly Long Sound. 
	 In another study, populations of the urchin, 
Evechinus chloroticus clustered into two groups 
corresponding to inner and outer fjord environments 
(Perrin 2002). Inner fjord populations among fjords 
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were more similar to each other than were inner and 
outer populations within the same fjord. The same 
was so for outer fjord populations among fjords. 
Although often thought to be neutral (Schlotterer 
2000), microsatellite loci may be under selection 
themselves or linked to DNA that is under selection 
(sensu Wright & Andolfatto 2008). If the loci used 
in the Perrin (2002) study were under selection, the 
observed genetic structure could reflect adaptation to 
and/or differential settlement/survival in sub-habitats 
within the fjords rather than patterns of connectivity 
among populations.
	 In the only study conducted on offshore islands, 
Wood & Gardner (2007) examined the genetic 
structure of two limpets (Siphonaria raoulensis 
and Scutellastra kermadecensis) endemic to the 
isolated Kermadec Islands. The assumption of 
self-recruitment was used to test hypotheses on 
connectivity among islands and to examine the 
scale over which self-recruitment occurs. Limited 
connectivity was observed among populations 
separated by less than 1 km, suggesting that larvae 
did not disperse or alternatively settle far from their 
population of origin (Wood & Gardner 2007). 

Larval duration and phylogeographic structure
Some common patterns of geographical subdivision 
have emerged from New Zealand phylogeographic 
studies, yet patterns have not been consistent across 
taxa, suggesting that species-specific traits are likely 
to influence population genetic structure. Although 
it is known that larval behaviour interacts with 
hydrology to determine physical transport (e.g., 
Shanks & Brink 2005), the complexities of coastal 
oceanography have made it difficult to predict 
dispersal pathways and explain the observed 
differences in genetic structure. In many instances, 
estimates of PLD are available (e.g., Sponaugle 
et al. 2006), but there is no consensus as to how 
variation in the length of larval duration might 
determine the scale at which propagules disperse 
or the genetic structure of populations (Mayr 1954; 
Ehrlich & Raven 1969; Burton 1983; Scheltema 
1986; Bohonak 1999; Bay et al. 2006; Bradbury et 
al. 2008; Miller & Ayre 2008). 
	 For species with limited dispersal ability, it is 
expected that migration among subpopulations will 
be rare and subpopulations may diverge owing to 
genetic drift (Wright 1951). Conversely, for taxa 
with extended dispersal stages, gene flow among 
populations is expected to be high and populations 
genetically homogeneous (Wright 1951, Mayr 1954; 
Scheltema 1986). However, the relationship between 

early life history characteristics and genetic structure 
varies significantly among taxa (Bohonak 1999; Bay 
et al. 2006; Bradbury et al. 2006). Bohonak (1999) 
and Bradbury et al. (2008) compared estimates of 
genetic differentiation among species and reported 
inverse relationships between larval duration and 
genetic differentiation, suggesting that increased 
larval duration is associated with decreases in genetic 
structure.  Moreover, Bradbury et al. (2008) in their 
analysis of 246 species that included echinoderms, 
molluscs, crustaceans and sea grasses, reported that 
genetic differentiation was more variable for species 
with limited larval duration. 
	 To examine the relationship between larval 
duration and genetic differentiation in New Zealand, 
we considered the two most commonly used measures 
of population differentiation, FST (and PHIST) and 
Nei’s genetic distance (D) (Nei 1972). FST and PHIST 
are measures of population differentiation with a 
maximum value of one indicating complete fixation 
of different alleles in each population (i.e., no gene 
flow), and a value of zero indicating an absence of 
subdivision, (i.e., high gene flow; Wright 1951). 
Despite controversy over the use of F-statistics as a 
measure of relative differentiation (Hedrick 1999, 
2005; Neigel 2002; Palumbi 2003; Bradbury & 
Betzen 2007; Jost 2008), FST and its analogues are the 
measures of genetic differentiation most frequently 
used in population genetics and therefore the most 
readily incorporated into a multi-study analysis (e.g., 
Bohonak 1999; Bradbury et al. 2008). 
	 Estimates of population differentiation (FST or 
PHIST) were available for 29 of the 42 New Zealand 
studies, with several studies presenting multiple 
values where a number of markers were analysed. 
Estimates based on mitochondrial DNA were corrected 
following the methods of Kinlan & Gaines (2003) to 
allow comparison with markers possessing biparental 
inheritance and diploid gene flow. Research has been 
conducted at a variety of spatial scales. Twenty-three 
studies included populations from across the entire 
length of New Zealand, whereas in the remaining 
19 studies sampling was conducted regionally or 
restricted to specific locations. To test whether the 
geographical scale of sampling influenced genetic 
differentiation, we regressed FST against the latitudinal 
range of sampling in each study, and there was no 
significant effect of sampling scale on differentiation 
(r2 = 0.0042, P > 0.10, n = 29). 
	 In most studies, PLDs are provided (Table 1), 
although these estimates are generally based on 
laboratory rather than field studies, and in some 
instances are based on congeners or similar invertebrate 
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families (e.g., Wood & Gardner 2007). Where PLD is 
presented as a range (e.g., 20–30 days), the longest 
estimate (i.e., 30 days) was used in our analysis. A 
significant linear relationship between FST and PLD 
was observed (r2 = 0.27, P < 0.01, n = 29; Fig. 4A) and 
a natural log transformation of FST values improved 
the fit (r2 = 0.39 P < 0.001, n = 29; Fig. 4A). 
	 Nei’s measure of genetic distance was only 
available in 12 of the 42 reviewed studies. Although 
frequently used to construct phylogenetic trees, raw 
values are published infrequently. There was no 
significant relationship between Nei’s D and PLD (r2 

= 0.19, P > 0.10, n = 12; Fig. 4B), although similar 
to FST, Nei’s D was more variable for taxa with 
reduced PLDs, with the greatest genetic distances 
among populations recorded for taxa with limited 
larval durations. 

	 Taxa with extended PLDs appear to be good 
dispersers with low levels of differentiation 
recorded among populations; for taxa with 
shorter PLDs, differentiation among populations 
is generally greater but highly variable. This result 
suggests that when PLD is short, other biological 
(e.g., larval behaviour and post-settlement 
dispersal) and physical (e.g., oceanographic) 
factors become more important in determining 
the scale of dispersal and population genetic 
structure. That similar relationships are found in 
more extensive analyses of the global literature 
(Bohonak 1999; Bradbury et al. 2008) suggests 
that the observed patterns are not biased by 
the small number of phylogeographic studies 
conducted in New Zealand, but represent a more 
general trend. 

Fig. 4  Relationship between pe-
lagic larval duration, PLD and: 
A, genetic differentiation (FST 
or PHIST; continuous line, FST = 
–0.0068 × PLD + 0.028, r2 = 0.27, 
P < 0.01, n = 29) and natural log 
transformed genetic differentiation 
(dashed line, ln(FST) = –0.0595 
× PLD – 1.785, r2 = 0.39, P < 
0.001, n = 29); B, Nei’s measure 
of genetic distance (D). Data from 
phylogeographic studies of New 
Zealand coastal benthos.
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Phylogeography versus biogeography
It is expected that the processes influencing the 
distribution of species (e.g., larval supply and 
environmental gradients) would also influence the 
genetic structure of populations through the regulation 
of gene flow or natural selection. Consequently it has 
been suggested that phylogeographic breaks may 
frequently coincide with biogeographic boundaries 
(Avise 1992, 1994). This hypothesis has been tested 
across a number of biogeographic boundaries, 
providing conflicting evidence for a close association 
between phylogeographic (divisions based on the 
geographical distribution of genetic variation) and 
biogeographic (divisions based on the geographical 
distribution of biodiversity) boundaries (e.g., Burton 
1998; Lamb & Avise 1992; Knowlton et al. 1993). 
Consequently, it has been suggested that the different 
processes responsible for causing biogeographic 
breaks have varying impacts on the phylogeography 
of wide-ranging species and that the occurrence of 

phylogeographic breaks may be governed by the 
geological history of a region (Burton 1998). 
	G enerally, the phylogeographic breaks evident 
in New Zealand species do not coincide with 
biogeographic boundaries (Moore 1949; Knox 
1975; Nelson 1994; Walls 1995; Francis 1996; 
Shears et al. 2008). Differences in community 
composition have been consistently detected either 
at finer spatial scales or at different locations from 
the genetic breaks observed in populations of wide-
ranging species (e.g., P. canaliculus). Biogeographic 
classification schemes based on the distribution 
of macroalgae, benthic invertebrates and reef fish 
have divided the New Zealand coast into between 2 
and 11 biogeographic regions with the most recent 
scheme describing 11 bioregions falling within two 
bioprovinces (Shears et al. 2008). Seven of 28 New 
Zealand-wide phylogeographic studies found no 
population subdivision, 12 studies detected two 
genetically distinct subpopulations, 3 studies detected 

Fig. 5  Actinia tenebrosa popula-
tion clusters (as defined by Veale 
(2007) based on data at four mic-
rosatellite loci) and biogeographic 
regions (as defined by Shears et 
al. (2008)). Dashed lines denote 
boundaries between bioregions; 
solid lines denote boundaries 
between bioprovinces (redrawn 
after Veale (2007) and Shears et 
al. (2008)).
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three subpopulations, and a single study detected 
four distinct subpopulations. The almost ubiquitous 
disparity between phylogeographic structure and 
biogeographic classification schemes may relate 
to the molecular markers used, their differing rates 
of evolution, and suitability for detecting fine scale 
genetic structure (Wan et al. 2004; DeYoung & 
Honeycutt 2005; Anne 2006). Alternatively, the 
discrepancy may relate to differences in the processes 
responsible for structuring the species and population 
boundaries measured in phylo- and biogeography.
Two phylogeographic studies did report genetic 
subdivision that more closely resembles the 
biogeographic classification scheme of Shears 
et al. (2008). Veale’s (2007) examination of A. 
tenebrosa revealed seven regional subpopulations 
using microsatellite data. When the biogeographic 
divisions proposed by Shears et al. (2008) are 
overlayed on Veale’s (2007) phylogeographic 
groupings, parallels between the two schemes 
are apparent with Veale’s subpopulations falling 
within single or adjacent bioregions (Fig. 5). 
Jones et al. (2008) using random amplification of 
polymorphic DNA (RAPD) analysis of the seagrass 
Z. muelleri also found a similar agreement between 
phylogeography and biogeography albeit with fewer 
sampling locations. 

Conclusions 

Genetic divergences were identified across large 
spatial scales for several marine benthic taxa in 
New Zealand and may indicate regions across which 
dispersal is limited. Two areas of particular interest 
are the East Cape and the Cook Strait regions. 
Upwellings south of Cook Strait have been widely 
proposed as a barrier to larval transport. However, 
there are limited oceanographic data to support this 
hypothesis and few phylogeographic studies have had 
sufficient sampling resolution to adequately test it. 
Genetic divergences have also been detected between 
the east and west coasts on both the North and South 
islands and among offshore islands. The mechanisms 
responsible for generating and maintaining these 
divergences remain largely unknown. In contrast, the 
hydrology of Fiordland is well characterised which 
has aided in the interpretation of genetic patterns 
observed there. 
	 The New Zealand taxa studied to date have 
predominantly been rocky reef dwellers. In many 
parts of New Zealand inter- and sub-tidal reefs occur 
either continuously along stretches of coast or in close 

proximity separated by stretches of sandy beach. 
Because of the small distances between suitable 
habitats, larvae may be able to move incrementally 
around the coast over successive generations and 
genetic divergences that could infer dispersal barriers 
may be masked by successive dispersal events. For 
organisms with specific habitat requirements (e.g., 
estuarine or island restricted species) occurring as 
discrete populations separated by greater distances, 
gene flow among populations is likely to be lower. 
These species are also more likely to exhibit the 
genetic effects of dispersal barriers and may be a 
useful target for future studies. 
	 Different molecular markers can provide infor
mation at different temporal and spatial scales (Anne 
2006). For example, fast evolving neutral markers 
are likely to provide information on breeding systems 
and/or gene flow among populations, whereas slower 
evolving markers may provide information about 
evolutionary relationships with other taxa. The 
selection of suitable molecular markers is therefore 
crucial for testing hypotheses at specific spatial or 
temporal scales and is likely to have influenced the 
phylogeographic patterns observed in New Zealand to 
date. The use of different markers has also hampered 
comparisons among studies, especially where there 
is uncertainty over the spatial and temporal scale of 
information provided by the specific markers (Anne 
2006). 
	 Studies of dispersal and/or population connectivity 
have generally used selectively neutral markers rather 
than genes that might reflect environmental gradients 
or transitions that drive shifts in community structure 
(e.g., Gardner & Kathiravetpillai 1997). However, 
the study of  ecologically significant genes may 
further improve our understanding of population 
connectivity. Specifically, the capacity of individuals 
to disperse great distances is irrelevant if new 
recruits lack the ability to survive and reproduce in 
a new environment. Dispersal potential is therefore 
likely to be a function of both physical transport and 
biological suitability with the relative importance of 
each varying between locations. The identification 
and inclusion of ecologically significant genes (sensu 
Schmidt et al. 2008) in population genetic studies 
would help determine the role of genetic variation in 
adaptation to environmental heterogeneity and is also 
likely to provide insight into the relationship between 
biogeographic and phylogeographic boundaries. 
	 Phylogeographic research can contribute to the 
management of the marine environment (Hauser 
& Carvalho 2008). Many marine ecosystems are 
threatened by human activities such as fishing, 
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coastal development and pollution, and resource 
managers are increasingly required to identify areas 
or habitats requiring protection (Himes 2007; Wood 
& Dragicevic 2007). Understanding population 
connectivity and subdivision would better allow for 
characterisation of population units for exploitation 
and/or conservation purposes. With few exceptions 
(e.g., A. tenebrosa), current knowledge of population 
connectivity and subdivision is inadequate to aid in 
management level decision making. 
	 New Zealand with its variable and extensive 
coastal landscape is ideal for studying the processes 
that drive larval dispersal patterns and population 
genetic structure. However, much of the research to 
date has been characterised by haphazard sampling 
and post hoc speculation rather than driven by a 
priori hypotheses. Consequently, patterns of genetic 
subdivision have been identified while the processes 
responsible for generating them remain elusive. 
Future studies would benefit greatly from a more 
structured sampling regime and a multidisciplinary 
approach designed to test hypotheses driven by 
physical and biological oceanography. This approach 
would result in a better understanding of the processes 
generating population subdivision as well as factors 
responsible for recruitment, dispersal and population 
connectivity.
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