29 research outputs found

    Multicentre Performance Evaluation of the Elecsys Anti-SARS-CoV-2 Immunoassay as an Aid in Determining Previous Exposure to SARS-CoV-2

    Get PDF
    Introduction We performed a multicentre evaluation of the Elecsys® Anti-SARS-CoV-2 immunoassay (Roche Diagnostics), an assay utilising a recombinant protein representing the nucleocapsid (N) antigen, for the in vitro qualitative detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Specificity was evaluated using serum/plasma samples from blood donors and routine diagnostic specimens collected before September 2019 (i.e., presumed negative for SARS-CoV-2-specific antibodies); sensitivity was evaluated using samples from patients with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection. Point estimates and 95% confidence intervals (CIs) were calculated. Method comparison was performed versus commercially available assays. Results Overall specificity for the Elecsys Anti-SARS-CoV-2 immunoassay (n = 9575) was 99.85% (95% CI 99.75–99.92): blood donors (n = 6714; 99.82%), routine diagnostic specimens (n = 2861; 99.93%), pregnant women (n = 2256; 99.91%), paediatric samples (n = 205; 100.00%). The Elecsys Anti-SARS-CoV-2 immunoassay demonstrated significantly higher specificity versus LIAISON SARS-CoV-2 S1/S2 IgG (99.71% vs. 98.48%), EUROIMMUN Anti-SARS-CoV-2 IgG (100.00% vs. 94.87%), ADVIA Centaur SARS-CoV-2 Total (100.00% vs. 87.32%) and iFlash SARS-CoV-2 IgM (100.00% vs. 99.58%) assays, and comparable specificity to ARCHITECT SARS-CoV-2 IgG (99.75% vs. 99.65%) and iFlash SARS-CoV-2 IgG (100.00% vs. 100.00%) assays. Overall sensitivity for Elecsys Anti-SARS-CoV-2 immunoassay samples drawn at least 14 days post-PCR confirmation (n = 219) was 93.61% (95% CI 89.51–96.46). No statistically significant differences in sensitivity were observed between the Elecsys Anti-SARS-CoV-2 immunoassay versus EUROIMMUN Anti-SARS-CoV-2 IgG (90.32% vs. 95.16%) and ARCHITECT SARS-CoV-2 IgG (84.81% vs. 87.34%) assays. The Elecsys Anti-SARS-CoV-2 immunoassay showed significantly lower sensitivity versus ADVIA Centaur SARS-CoV-2 Total (85.19% vs. 95.06%) and iFlash SARS-CoV-2 IgG (86.25% vs. 93.75%) assays, but significantly higher sensitivity versus the iFlash SARS-CoV-2 IgM assay (86.25% vs. 33.75%). Conclusion The Elecsys Anti-SARS-CoV-2 immunoassay demonstrated very high specificity and high sensitivity in samples collected at least 14 days post-PCR confirmation of SARS-CoV-2 infection, supporting its use to aid in determination of previous exposure to SARS-CoV-2

    HIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia

    Get PDF
    Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling. Initial studies indicated that the half-life of Ado was increased by as much as fivefold after exposure of endothelia to hypoxia. Examination of expressional levels of the equilibrative nucleoside transporter (ENT)1 and ENT2 revealed a transcriptionally dependent decrease in mRNA, protein, and function in endothelia and epithelia. Examination of the ENT1 promoter identified a hypoxia inducible factor 1 (HIF-1)–dependent repression of ENT1 during hypoxia. Using in vitro and in vivo models of Ado signaling, we revealed that decreased Ado uptake promotes vascular barrier and dampens neutrophil tissue accumulation during hypoxia. Moreover, epithelial Hif1α mutant animals displayed increased epithelial ENT1 expression. Together, these results identify transcriptional repression of ENT as an innate mechanism to elevate extracellular Ado during hypoxia

    Late Stage Infection in Sleeping Sickness

    Get PDF
    At the turn of the 19th century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles

    Evaluation of the COVID-19 vaccination after broad implementation—an interim conclusion for Germany in July 2022

    No full text
    Seit Dezember 2020 stehen in Deutschland Impfstoffe gegen COVID-19 zur Verfügung. Zu den Hauptaufgaben des Fachgebiets Impfprävention des Robert Koch-Instituts (RKI) in der COVID-19-Pandemie gehören die Erhebung von Impfquoten und das Monitoring der Wirksamkeit der Impfung. Der Artikel gibt einen Überblick über die hierfür während der Pandemie etablierten Strukturen, Datengrundlagen und Studien. Ausgehend vom Digitalen Impfquotenmonitoring (DIM), welches für die tagesaktuelle Berechnung der Impfquote in mehreren Altersgruppen verwendet wird, werden die Berechnung der Inzidenzen nach Impfstatus und die Methodik der Impfeffektivitätsschätzung gegen verschiedene Endpunkte (Hospitalisierung, intensivstationäre Betreuung, Tod) beschrieben. Während diese Methode lediglich eine erste Abschätzung der Impfeffektivität erlaubt, kann in bevölkerungsbezogenen nichtrandomisierten Studien eine detailliertere und genauere Untersuchung der Wirksamkeit der COVID-19-Impfstoffe unter Realbedingungen erfolgen. Hierzu wird die gemeinsam mit dem Paul-Ehrlich-Institut (PEI) durchgeführte krankenhausbasierte Fall-Kontrollstudie COViK vorgestellt. Die Vorteile und Limitationen der genannten Strukturen und Instrumente werden diskutiert. Abschließend wird ein Ausblick auf hieraus resultierende künftige Herausforderungen in der Pandemie und beim Übergang in die endemische Lage gegeben.Vaccines against COVID-19 have been available in Germany since December 2020. At the Robert Koch Institute (RKI), the Immunization Unit is responsible for monitoring vaccination coverage and assessment of vaccine effectiveness. This article provides an overview of the respective reporting structures, vaccination databases, and epidemiological studies established by the Immunization Unit during the COVID-19 pandemic. We describe the COVID-19 Digital Vaccination Coverage Monitoring (DIM), which provides daily updates on vaccination coverage by age group. We next describe how, based on the DIM data and COVID-19 case data, the assessment of vaccine effectiveness against different clinical endpoints (hospitalization, intensive care, death) is performed. While this method is used for a preliminary estimate of vaccine efficacy, population-based nonrandomized studies are able to provide more precise and detailed estimates under “real-world” conditions. In this context, we describe the hospital-based case-control study COViK, which is being conducted in collaboration with the Paul Ehrlich Institute (PEI). We discuss strengths and limitations of the abovementioned structures and tools. Finally, we provide an outlook on future challenges that may arise during the ongoing pandemic and during the transition phase into an endemic situation.Peer Reviewe
    corecore