75 research outputs found

    Gastric motor and sensory function in health assessed by magnetic resonance imaging: Establishment of reference intervals for the Nottingham test meal in healthy subjects

    Full text link
    BACKGROUND Current investigations of gastric emptying rarely identify the cause of symptoms or provide a definitive diagnosis in patients with dyspepsia. This study assessed gastric function by magnetic resonance imaging (MRI) using the modular "Nottingham test meal" (NTM) in healthy volunteers (HVs). METHODS The NTM comprises (a) 400 mL liquid nutrient (0.75 kcal/mL) labeled with Gadolinium-DOTA and (b) an optional solid component (12 agar-beads [0 kcal]). Filling sensations were documented. MRI measurements of gastric volume, emptying, contraction wave frequency, and secretion were obtained using validated methods. KEY RESULTS Gastric function was measured in a population of 73 HVs stratified for age and sex. NTM induced moderate satiety and fullness. Labeled fluid was observed in the small bowel in all subjects after meal ingestion ("early-phase" GE). Secretion was rapid such that postprandial gastric content volume was often greater than meal volume (GCV0 > 400 mL), and there was increasing dilution of the meal during the study (P < 0.001). Gastric half-time was median 66-minutes (95% reference interval 35 to 161-minutes ["late-phase" GE]). The number of intact agar beads in the stomach was 7/12 (58%) at 60-minutes and 1/12 (8%) at 120-minutes. Age, bodyweight and sex had measurable effects on gastric function; however, these were small compared to inter-individual variation for most metrics. CONCLUSIONS AND INFERENCES Reference intervals are presented for MRI measurements of gastric function assessed for the mixed liquid/solid NTM. Studies in patients will determine which metrics are of clinical value and also whether the reference intervals presented here offer optimal diagnostic sensitivity and specificity

    Simultaneous measurement of gastric emptying of a soup test meal using MRI and gamma scintigraphy

    Get PDF
    Measurement of gastric emptying is of clinical value for a range of conditions. Gamma scintigraphy (GS) has an established role, but the use of magnetic resonance imaging (MRI) has recently increased. Previous comparison studies between MRI and GS showed good correlation, but were performed on separate study days. In this study, the modalities were alternated rapidly allowing direct comparison with no intra-individual variability confounds. Twelve healthy participants consumed 400 g of Technetium-99m (99mTc)-labelled soup test meal (204 kcal) and were imaged at intervals for 150 min, alternating between MRI and GS. The time to empty half of the stomach contents (T1/2) and retention rate (RR) were calculated and data correlated. The average T1/2 was similar for MRI (44 ± 6 min) and GS (35 ± 4 min) with a moderate but significant difference between the two modalities (p ≀0.004). The individual T1/2 values were measured, and MRI and GS showed a good positive correlation (r = 0.95, p ≀ 0.0001), as well as all the RRs at each time point up to 120 min. Gastric emptying was measured for the first time by MRI and GS on the same day. This may help with translating the use of this simple meal, known to elicit reliable, physiological, and pathological gastrointestinal motor, peptide, and appetite response

    Application of In Vivo MRI Imaging to Track a Coated Capsule and Its Disintegration in the Gastrointestinal Tract in Human Volunteers

    Get PDF
    Oral specially coated formulations have the potential to improve treatment outcomes of a range of diseases in distal intestinal tract whilst limiting systemic drug absorption and adverse effects. Their development is challenging, partly because of limited knowledge of the physiological and pathological distal gastrointestinal factors, including colonic chyme fluid distribution and motor function. Recently, non-invasive techniques such as magnetic resonance imaging (MRI) have started to provide novel important insights. In this feasibility study, we formulated a coated capsule consisting of a hydroxypropyl methylcellulose (HPMC) shell, coated with a synthetic polymer based on polymethacrylate-based copolymer (EudragitÂź) that can withstand the upper gastrointestinal tract conditions. The capsule was filled with olive oil as MRI-visible marker fluid. This allowed us to test the ability of MRI to track such a coated capsule in the gastrointestinal tract and to assess whether it is possible to image its loss of integrity by exploiting the ability of MRI to image fat and water separately and in combination. Ten healthy participants were administered capsules with varying amounts of coating and underwent MRI imaging of the gastrointestinal tract at 45 min intervals. The results indicate that it is feasible to track the capsules present in the gastrointestinal tract at different locations, as they were detected in all 10 participants. By the 360 min endpoint of the study, in nine participants the capsules were imaged in the small bowel, in eight participants in the terminal ileum, and in four in the colon. Loss of capsule integrity was observed in eight participants, occurring predominantly in distal intestinal regions. The data indicate that the described approach could be applied to assess performance of oral formulations in undisturbed distal gastrointestinal regions, without the need for ionizing radiation or contrast agents

    Luminal fluid motion inside an in vitro dissolution model of the human ascending colon assessed using magnetic resonance imaging

    Get PDF
    Knowledge of luminal flow inside the human colon remains elusive, despite its importance for the design of new colon-targeted drug delivery systems and physiologically relevant in silico models of dissolution mechanics within the colon. This study uses magnetic resonance imaging (MRI) techniques to visualise, measure and differentiate between different motility patterns within an anatomically representative in vitro dissolution model of the human ascending colon: the dynamic colon model (DCM). The segmented architecture and peristalsis-like contractile activity of the DCM generated flow profiles that were distinct from compendial dissolution apparatuses. MRI enabled different motility patterns to be classified by the degree of mixing-related motion using a new tagging method. Different media viscosities could also be differentiated, which is important for an understanding of colonic pathophysiology, the conditions that a colon-targeted dosage form may be subjected to and the effectiveness of treatments. The tagged MRI data showed that the DCM effectively mimicked wall motion, luminal flow patterns and the velocities of the contents of the human ascending colon. Accurate reproduction of in vivo hydrodynamics is an essential capability for a biorelevant mechanical model of the colon to make it suitable for in vitro data generation for in vitro in vivo evaluation (IVIVE) or in vitro in vivo correlation (IVIVC). This work illustrates how the DCM provides new insight into how motion of the colonic walls may control luminal hydrodynamics, driving erosion of a dosage form and subsequent drug release, compared to traditional pharmacopeial methods

    Magnetic resonance imaging quantification of fasted state colonic liquid pockets in healthy humans

    Get PDF
    The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or “pockets”. Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∌8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment

    Gastrointestinal peptides and small bowel hypomotility are possible causes for fasting and postprandial symptoms in active Crohn’s disease

    Get PDF
    BackgroundCrohn's disease (CD) patients suffer postprandial aversive symptoms, which can lead to anorexia and malnutrition. Changes in the regulation of gut hormones and gut dysmotility are believed to play a role.ObjectivesThis study aimed to investigate small-bowel motility and gut peptide responses to a standard test meal in CD by using MRI.MethodsWe studied 15 CD patients with active disease (age 36 ± 3 y; BMI 26 ± 1 kg/m 2) and 20 healthy volunteers (HVs; age 31 ± 3 years; BMI 24 ± 1 kg/m 2). They underwent baseline and postprandial MRI scans, symptom questionnaires, and blood sampling following a 400-g soup meal (204 kcal). Small-bowel motility, other MRI parameters, and glucagon-like peptide-1 (GLP-1), polypeptide YY (PYY), and cholecystokinin peptides were measured. Data are presented as means ± SEMs.ResultsHVs had significantly higher fasting motility indexes [106 ± 13 arbitrary units (a.u.)], compared with CD participants (70 ± 8 a.u.; P ≀ 0.05). Postprandial small-bowel water content showed a significant time by group interaction (P < 0.05), with CD participants showing higher levels from 210 min postprandially. Fasting concentrations of GLP-1 and PYY were significantly greater in CD participants, compared with HVs [GLP-1, CD 50 ± 8 ”g/mL versus HV 13 ± 3 ”g/mL (P ≀ 0.0001); PYY, CD 236 ± 16 pg/mL versus HV 118 ± 12 pg/mL (P ≀ 0.0001)]. The meal challenge induced a significant postprandial increase in aversive symptom scores (fullness, distention, bloating, abdominal pain, and sickness) in CD participants compared with HVs (P ≀ 0.05).ConclusionsThe decrease in fasting small-bowel motility noted in CD participants can be ascribed to the increased fasting gut peptides. A better understanding of the etiology of aversive symptoms in CD will facilitate identification of better therapeutic targets to improve nutritional status. This trial was registered at clinicaltrials.gov as NCT03052465

    Demonstration of differences in colonic volumes, transit, chyme consistency and response to psyllium between healthy and constipated subjects using magnetic resonance imaging

    Get PDF
    Background: In functional gastrointestinal disorders a lack of objective biomarkers limits evaluation of underlying mechanisms. We aimed to demonstrate the utility of Magnetic Resonance Imaging (MRI) for this task using psyllium, an effective constipation treatment, in patients and controls. Methods: Two crossover studies: 1) adults without constipation (controls, n=9) took three treatments in randomised order for 6 days - maltodextrin (placebo), psyllium 3.5g t.d.s and 7g t.d.s.; 2) adults with chronic constipation (patients, n=20) took placebo and psyllium 7g t.d.s. for 6 days. MRI was performed fasting and postprandially on day 6. Measurements included small bowel and ascending colon water content, colonic volume, transit time and MR relaxometry (T1, T2) to assess colonic chyme. Stool water percentage was measured. Results: 7g psyllium t.d.s. increased fasting colonic volumes in controls from median 372mL (IQR 284-601) to 578 mL (IQR 510-882), and in patients from median 831mL (IQR 745–934) to 1104mL (847–1316),

    Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome

    Get PDF
    Background & Aims: Poorly digested, fermentable carbohydrates may induce symptoms of irritable bowel syndrome (IBS), via unclear mechanisms. We performed a randomized trial with magnetic resonance imaging (MRI) analysis to investigate correlations between symptoms and changes in small and large bowel contents following oral challenge. Methods: We performed a 3-period crossover study of 29 adult patients with IBS (based on Rome III criteria, with symptoms of abdominal pain or discomfort for at least 2 days/week) and reported bloating. In parallel we performed the same study of 29 healthy individuals (controls). Studies were performed in the United Kingdom from January 2013 through February 2015. On 3 separate occasions (at least 7 days apart), subjects were given a 500 ml drink containing 40 g of carbohydrate (glucose in the first period, fructose in the second, and inulin in the third, in a random order). Levels of breath hydrogen were measured and intestinal content was assessed by MRI before and at various time points after consumption of each drink. Symptoms were determined based on subjects’ responses to the Hospital Anxiety and Depression Scale questionnaire and the Patient Health Questionnaire-15. The primary endpoint was whether participants had a clinically important symptom response during the 300 minutes following consumption of the drink. Results: More patients with IBS reached the pre-defined symptom threshold after intake of inulin (13/29) or fructose (11/29) than glucose (6/29). Symptoms peaked sooner after intake of fructose than inulin. Fructose increased small bowel water content in both patients and controls whereas inulin increased colonic volume and gas in both. Fructose and inulin increased breath hydrogen levels in both groups, compared to glucose; fructose produced an earlier increase than inulin. Controls had lower symptom scores during the period after drink consumption than patients with IBS, despite similar MRI parameters and breath hydrogen responses. In patients who reached the symptom threshold after inulin intake, peak symptom intensity correlated with peak colonic gas (r = 0.57; P<0.05). Changes in MRI features and peak breath hydrogen levels were similar in patients who did and did not reach symptom threshold. Conclusions: Patients with IBS and healthy individuals without IBS (controls) have similar physiological responses following intake of fructose or inulin; patients more frequently report symptoms after inulin than controls. In patients with a response to inulin, symptoms relate to levels of intra-luminal gas, but peak gas levels do not differ significantly between responders, non-responders or controls. This indicates that colonic hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in patients with IBS. Clinicaltrials.gov no: NCT0177685

    Effects of Bolus and Continuous Nasogastric Feeding on Gastric Emptying, Small Bowel Water Content, Superior Mesenteric Artery Blood Flow, and Plasma Hormone Concentrations in Healthy Adults: A Randomized Crossover Study

    Get PDF
    Objective: We aimed to demonstrate the effect of continuous or bolus nasogastric feeding on gastric emptying, small bowel water content, and splanchnic blood flow measured by magnetic resonance imaging (MRI) in the context of changes in plasma gastrointestinal hormone secretion.Background: Nasogastric/nasoenteral tube feeding is often complicated by diarrhea but the contribution of feeding strategy to the etiology is unclear.Methods: Twelve healthy adult male participants who underwent nasogastric intubation before a baseline MRI scan, received 400 mL of Resource Energy (Nestle) as a bolus over 5 minutes or continuously over 4 hours via pump in this randomized crossover study. Changes in gastric volume, small bowel water content, and superior mesenteric artery blood flow and velocity were measured over 4 hours using MRI and blood glucose and plasma concentrations of insulin, peptide YY, and ghrelin were assayed every 30 minutes.Results: Bolus nasogastric feeding led to significant elevations in gastric volume (P < 0.0001), superior mesenteric artery blood flow (P < 0.0001), and velocity (P = 0.0011) compared with continuous feeding. Both types of feeding reduced small bowel water content, although there was an increase in small bowel water content with bolus feeding after 90 minutes (P < 0.0068). Similarly, both types of feeding led to a fall in plasma ghrelin concentration although this fall was greater with bolus feeding (P < 0.0001). Bolus feeding also led to an increase in concentrations of insulin (P = 0.0024) and peptide YY (P < 0.0001), not seen with continuous feeding.Conclusion: Continuous nasogastric feeding does not increase small bowel water content, thus fluid flux within the small bowel is not a major contributor to the etiology of tube feeding-related diarrhea
    • 

    corecore