46 research outputs found

    A Cytosolic Iron Chaperone that Delivers Iron to Ferritin

    Get PDF
    Ferritins are the main iron storage proteins found in animals, plants and bacteria. The capacity to store iron in ferritin is essential for life in mammals, but the mechanism by which cytosolic iron is delivered to ferritin is unknown. Human ferritins expressed in yeast contain little iron. The human Poly r(C)-Binding Protein 1 (PCBP1) increased the amount of iron loaded into ferritin when expressed in yeast. PCBP1 bound to ferritin in vivo, and bound iron and facilitated iron loading into ferritin in vitro. Depletion of PCBP1 in human cells inhibited ferritin iron loading and increased cytosolic iron pools. Thus, PCBP1 can function as a cytosolic iron chaperone in the delivery of iron to ferritin

    Comparison of COVID-19 and common cold chemosensory dysfunction

    Get PDF
    Anosmia constitutes a prominent symptom of COVID-19. However, anosmia is also a common symptom of acute colds of various origins. In contrast to an acute cold, it appears from several questionnaire-based studies that in the context of COVID-19 infection, anosmia is the main rhinological symptom and is usually not associated with other rhinological symptoms such as rhinorrhoea or nasal obstruction. Until now, no study has directly compared smell and taste function between COVID-19 patients and patients with other causes of upper respiratory tract infection (URTI) using valid and reliable psychophysical tests. In this study, we aimed to objectively assess and compare olfactory and gustatory functions in 10 COVID-19 patients (PCR diagnosed, assessed on average 2 weeks after infection), 10 acute cold (AC) patients (assessed before the COVID-19 outbreak) and 10 healthy controls, matched for age and sex. Smell performance was assessed using the extended "Sniffin' Sticks" test battery (4), while taste function was assessed using "taste strips" (5). Receiver Operating Characteristic (ROC) curves were built to probe olfactory and gustatory scores in terms of their discrimination between COVID-19 and AC patients. Our results suggest that mechanisms of COVID-19 related olfactory dysfunction are different from those seen in an AC and may reflect, at least to some extent, a specific involvement at the level of central nervous system in some COVID-19 patients. In the future, studies to assess the prevalence of persistent anosmia and neuroanatomical changes on MRI correlated to chemosensory function, will be useful to understand these mechanisms

    Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination

    Get PDF
    BACKGROUND: Definitions are essential for effective communication and discourse, particularly in science. They allow the shared understanding of a thought or idea, generalization of knowledge, and comparison across scientific investigation. The current terms describing olfactory dysfunction are vague and overlapping. SUMMARY: As a group of clinical olfactory researchers, we propose the standardization of the terms "dysosmia," "anosmia," "hyposmia," "normosmia," "hyperosmia," "olfactory intolerance," "parosmia," and "phantosmia" (or "olfactory hallucination") in olfaction-related communication, with specific definitions in this text. KEY MESSAGES: The words included in this paper were determined as those which are most frequently used in the context of olfactory function and dysfunction, in both clinical and research settings. Despite widespread use in publications, however, there still exists some disagreement in the literature regarding the definitions of terms related to olfaction. Multiple overlapping and imprecise terms that are currently in use are confusing and hinder clarity and universal understanding of these concepts. There is a pressing need to have a unified agreement on the definitions of these olfactory terms by researchers working in the field of chemosensory sciences. With the increased interest in olfaction, precise use of these terms will improve the ability to integrate and advance knowledge in this field

    Olfactory nomenclature: An orchestrated effort to clarify terms and definitions of dysosmia, anosmia, hyposmia, normosmia, hyperosmia, olfactory intolerance, parosmia, and phantosmia/olfactory hallucination

    Get PDF
    Background: Definitions are essential for effective communication and discourse, particularly in science. They allow the shared understanding of a thought or idea, generalization of knowledge, and comparison across scientific investigation. The current terms describing olfactory dysfunction are vague and overlapping. Summary: As a group of clinical olfactory researchers, we propose the standardization of the terms “dysosmia,” “anosmia,” “hyposmia,” “normosmia,” “hyperosmia,” “olfactory intolerance,” “parosmia,” and “phantosmia” (or “olfactory hallucination”) in olfaction-related communication, with specific definitions in this text. Key Messages: The words included in this paper were determined as those which are most frequently used in the context of olfactory function and dysfunction, in both clinical and research settings. Despite widespread use in publications, however, there still exists some disagreement in the literature regarding the definitions of terms related to olfaction. Multiple overlapping and imprecise terms that are currently in use are confusing and hinder clarity and universal understanding of these concepts. There is a pressing need to have a unified agreement on the definitions of these olfactory terms by researchers working in the field of chemosensory sciences. With the increased interest in olfaction, precise use of these terms will improve the ability to integrate and advance knowledge in this field

    Clinical Olfactory Working Group Consensus statement on the treatment of post infectious olfactory dysfunction

    Get PDF
    Background: Respiratory tract viruses are the second most common cause of olfactory dysfunction. As we learn more about the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the recognition that olfactory dysfunction is a key symptom of this disease process, there is a greater need than ever for evidence-based management of postinfectious olfactory dysfunction (PIOD). Objective: Our aim was to provide an evidence-based practical guide to the management of PIOD (including post–coronavirus 2019 cases) for both primary care practitioners and hospital specialists. Methods: A systematic review of the treatment options available for the management of PIOD was performed. The written systematic review was then circulated among the members of the Clinical Olfactory Working Group for their perusal before roundtable expert discussion of the treatment options. The group also undertook a survey to determine their current clinical practice with regard to treatment of PIOD. Results: The search resulted in 467 citations, of which 107 articles were fully reviewed and analyzed for eligibility; 40 citations fulfilled the inclusion criteria, 11 of which were randomized controlled trials. In total, 15 of the articles specifically looked at PIOD whereas the other 25 included other etiologies for olfactory dysfunction. Conclusions: The Clinical Olfactory Working Group members made an overwhelming recommendation for olfactory training; none recommended monocycline antibiotics. The diagnostic role of oral steroids was discussed; some group members were in favor of vitamin A drops. Further research is needed to confirm the place of other therapeutic options

    Systemic corticosteroids in coronavirus disease 2019 (COVID‐19)‐related smell dysfunction: an international view

    Get PDF
    The frequent association between coronavirus disease 2019 (COVID‐19) and olfactory dysfunction is creating an unprecedented demand for a treatment of the olfactory loss. Systemic corticosteroids have been considered as a therapeutic option. However, based on current literature, we call for caution using these treatments in early COVID‐19–related olfactory dysfunction because: (1) evidence supporting their usefulness is weak; (2) the rate of spontaneous recovery of COVID‐19–related olfactory dysfunction is high; and (3) corticosteroids have well‐known potential adverse effects. We encourage randomized placebo‐controlled trials investigating the efficacy of systemic steroids in this indication and strongly emphasize to initially consider smell training, which is supported by a robust evidence base and has no known side effects

    Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae

    Get PDF
    Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency

    Response to Iron Deprivation in Saccharomyces cerevisiae

    No full text

    Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae

    No full text
    Siderophores are small iron-binding molecules that are synthesized and secreted in the iron-free form by microorganisms. Saccharomyces cerevisiae takes up iron bound to siderophores by two separate systems, one of which requires the ARN family of sidero phore–iron transporters. Arn1p and Arn3p are expressed in endosome-like intracellular vesicles. Here we present evidence that, in the absence of its specific substrate, ferrichrome, Arn1p is sorted directly from the Golgi to the endosomal compartment and does not cycle to the plasma membrane. When cells are exposed to ferrichrome at low concentrations, Arn1p stably relocalizes to the plasma membrane. At higher concentrations of ferrichrome, Arn1p relocalizes to the plasma membrane and rapidly undergoes endocytosis. Plasma membrane localization of Arn1p occurs only in the presence of its specific substrate, and not in the presence of other siderophores. Despite expression of Arn1p on the plasma membrane, mutant strains with defects in endocytosis exhibit reduced uptake of ferrichrome–iron. Thus, siderophores influence the trafficking of the Arn transporters within the cell and this trafficking is important for transporter function
    corecore