36 research outputs found

    Immunophenotypic Lymphocyte Profiles in Human African Trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT) is a deadly vector-born disease caused by an extracellular parasite, the trypanosome. Little is known about the cellular immune responses elicited by this parasite in humans. We used multiparameter flow cytometry to characterize leukocyte immunophenotypes in the blood and cerebrospinal fluid (CSF) of 33 HAT patients and 27 healthy controls identified during a screening campaign in Angola and Gabon. We evaluated the subsets and activation markers of B and T lymphocytes. Patients had a higher percentage of CD19+ B lymphocytes and activated B lymphocytes in the blood than did controls, but lacked activated CD4+ T lymphocytes (CD25+). Patients displayed no increase in the percentage of activated CD8+ T cells (HLA-DR+, CD69+ or CD25+), but memory CD8 T-cell levels (CD8+CD45RA−) were significantly lower in patients than in controls, as were effector CD8 T-cell levels (CD8+CD45RA+CD62L−). No relationship was found between these blood immunophenotypes and disease severity (stage 1 vs 2). However, CD19+ B-cell levels in the CSF increased with disease severity. The patterns of T and B cell activation in HAT patients suggest that immunomodulatory mechanisms may operate during infection. Determinations of CD19+ B-cell levels in the CSF could improve disease staging

    High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons

    Get PDF
    The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.National Institutes of Health (U.S.) (MH095096)National Institutes of Health (U.S.) (R01 GM089652

    Contribution des modèles expérimentaux dans l'étude des trypanosomoses africaines

    No full text
    LIMOGES-BU Médecine pharmacie (870852108) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Trypanocidal activity of methylene blue. Evidence for in vitro efficacy and in vivo failure.

    No full text
    International audienceHuman African trypanosomiasis remains a difficult health problem to treat because of the few compounds available nowadays and their toxicity. The disease also affects animals and is therefore responsible for economic difficulties and zoonotic risks. There is an urgent need to develop new drugs for treatment of African trypanosomiasis. Methylene blue is a safe and easy-to-use drug employed in human therapy. It is also known to have antimalarial activity. In this study, methylene blue trypanocidal activity was found in vitro but it failed to cure trypanosome infection in mice when administered at 300 mg/kg p.o.or at 200 mg/kg i.p. Differences between in vitro and in vivo activities are discussed, and further in-depth studies are warranted

    In-field stereotactic body radiotherapy (SBRT) reirradiation for pulmonary malignancies as a multicentre analysis of the German Society of Radiation Oncology (DEGRO)

    Get PDF
    Data of thoracic in-field reirradiation with two courses of stereotactic body radiotherapy (SBRT) is scarce. Aim of this study is to investigate feasibility and safety of this approach. Patients with a second course of thoracic SBRT and planning target volume (PTV) overlap were analyzed in this retrospective, multicenter study. All plans and clinical data were centrally collected. 27 patients from 8 centers have been amenable for evaluation: 12 with non-small-cell lung cancer, 16 with metastases, treated from 2009 (oldest first course) to 2020 (latest second course). A median dose of 38.5 Gy to the 65%-isodose over a median of 5 fractions was prescribed in the first course and 40 Gy in 5 fractions for the second SBRT-course. Median PTV of the second SBRT was 29.5 cm3^{3}, median PTV overlap 22 cm3^{3}. With a median interval of 20.2 months between the two SBRT-courses, 1-year OS, and -LCR were 78.3% and 70.3% respectively. 3 patients developed grade 1 and one grade 2 pneumonitis. No grade > 2 toxicity was observed. Peripheral location and dose were the only factors correlating with tumor control. A second SBRT-course with PTV overlap appears safe and achieves reasonable local control

    In vitro apoptotic induction of human glioblastoma cells by Fas ligand plus etoposide and in vivo antitumour activity of combined drugs in xenografted nude rats

    No full text
    International audienceHuman glioblastomas that express Fas/CD95 receptor are highly resistant to conventional brain tumour therapies. The aim of this study is to evaluate anti-tumour properties of a combination of Fas ligand (FasL) plus etoposide with or without dexamethasone on intracerebral experimental glioblastomas. The human Fas-expressing glioblastoma cell line, U-87 MG, was firstly studied in vitro for apoptosis and proliferation assays in the presence of FasL and etoposide, separately or associated, in order to detect a supra-additive effect on FasL or etoposide-induced apoptosis. The tumourigenicity of the U-87 MG cell line and therapeutic effects of FasL-etoposide alone or combined with dexamethasone were next studied on U-87 MG cells xenografted to nude-rat brain and tumour size was hence examined by histological and immunohistochemical stainings. We demonstrated in vitro that the combination of both molecules strongly inhibited the proliferation rate and increased the sensitivity of glioblastoma cells to Fas or etoposide-mediated apoptosis. Moreover, analysis of rat brains was performed 30 days after xenograft of glioblastoma cells. These data show that the combination of FasL and etoposide could reduce significantly the tumour size and that the addition of dexamethasone enhanced the inhibiting effect of FasL and etoposide on tumour growth in vivo

    Antiviral drug screening by assessing epithelial functions and innate immune responses in human 3D airway epithelium model

    No full text
    Respiratory viral infections cause mild to severe diseases, such as common cold, bronchiolitis and pneumonia and are associated with substantial burden for society. To test new molecules for shortening, alleviating the diseases or to develop new therapies, relevant human in vitro models are mandatory. MucilAir™, a human standardized air-liquid interface 3D airway epithelial culture holds in vitro specific mechanisms to counter invaders comparable to the in vivo situation, such as mucus production, mucociliary clearance, and secretion of defensive molecules. The objective of this study was to test the relevance of such a model for the discovery and validation of antiviral drugs. Fully differentiated 3D nasal epithelium cultures were inoculated with picornaviruses, a coronavirus and influenza A viruses in the absence or in the presence of reference antiviral drugs. Results showed that, rupintrivir efficiently inhibits the replication of respiratory picornaviruses in a dose dependent manner and prevents the impairment of the mucociliary clearance. Similarly, oseltamivir reduced the replication of influenza A viruses in a dose dependent manner and prevented the impairment of the epithelial barrier function and cytotoxicity until 4 days of infection. In addition we found that Rhinovirus B14, C15 and influenza A(H1N1) induce significant increase of β Defensins 2 and Cathelicidin release with different time course. These results reveal that a large panel of epithelial functions is modified upon viral infection and validate MucilAir™ as a pertinent tool for pre-clinical antiviral drug testing
    corecore