2,108 research outputs found

    Plastic response of a 2D amorphous solid to quasi-static shear : I - Transverse particle diffusion and phenomenology of dissipative events

    Full text link
    We perform extensive simulations of a 2D LJ glass subjected to quasi-static shear deformation at T=0. We analyze the distribution of non-affine displacements in terms of contributions of plastic, irreversible events, and elastic, reversible motions. From this, we extract information about correlations between plastic events and about the elastic non-affine noise. Moreover, we find that non-affine motion is essentially diffusive, with a clearly size-dependent diffusion constant. These results, supplemented by close inspection of the evolving patterns of the non-affine tangent displacement field, lead us to propose a phenomenology of plasticity in such amorphous media. It can be schematized in terms of elastic loading and irreversible flips of small, randomly located shear transformation zones, elastically coupled via their quadrupolar fields

    New Technologies, Workplace Organisation and the Age Structure of the Workforce: Firm-Level Evidence

    Get PDF
    This paper investigates the relationships between new technologies, innovative workplace practices and the age structure of the workforce in a sample of French manufacturing firms. We find evidence that the wage bill share of older workers is lower in innovative firms and that the opposite holds for younger workers. This age bias is also evidenced within occupational groups, thus suggesting that skills do not completely protect workers against the labour market consequences of ageing. More detailed analysis of employment inflows and outflows shows that new technologies essentially affect older workers through reduced hiring opportunities, whereas organisational innovations mainly increase their probability of exit. This suggests that some skill obsolescence may be at work in our sample.new work practices, technology, older workers, labour demand

    Stability of hexagonal solidification patterns

    Full text link
    We investigate the dynamics of cellular solidification patterns using three-dimensional phase-field simulations. The cells can organize into stable hexagonal patterns or exhibit unsteady evolutions. We identify the relevant secondary instabilities of regular hexagonal arrays and find that the stability boundaries depend significantly on the strength of crystalline anisotropy. We also find multiplet states that can be reached by applying well-defined perturbations to a pre-existing hexagonal array.Comment: Minor changes, mainly in introduction and conclusion, one reference adde

    Perturbation of Tunneling Processes by Mechanical Degrees of Freedom in Mesoscopic Junctions

    Get PDF
    We investigate the perturbation in the tunneling current caused by non-adiabatic mechanical motion in a mesoscopic tunnel junction. A theory introduced by Caroli et al. \cite{bi1,bi2,bi3} is used to evaluate second order self-energy corrections for this non-equilibrium situation lacking translational invariance. Inelastic signatures of the mechanical degrees of freedom are found in the current-voltage I(V)I(V) characteristics. These give rise to sharp features in the derivative spectrum, d2I/dV2d^2I/dV^2.Comment: 22 pages LaTeX + 3 uuencoded PS picture

    Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy

    Full text link
    The square-gradient density-functional model with triple-parabolic free energy, that was used previously to study the homogeneous bubble nucleation [J. Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical bubble nucleated within the bulk under-saturated stretched fluid. The stability of the bubble is studied by solving the Schr\"odinger equation for the fluctuation. The negative eigenvalue corresponds to the unstable growing mode of the fluctuation. Our results show that there is only one negative eigenvalue whose eigenfunction represents the fluctuation that corresponds to the isotropically growing or shrinking nucleus. In particular, this negative eigenvalue survives up to the spinodal point. Therefore the critical bubble is not fractal or ramified near the spinodal.Comment: 9 pages, 8 figures, Journal of Chemical Physics accepted for publicatio

    Comment on ``Quasiparticle Spectra around a Single Vortex in a d-wave Superconductor''

    Full text link
    In a recent Letter Morita, Kohmoto and Maki analyzed the structure of quasiparticle states near a single vortex in a d-wave superconductor using an approximate version of the Bogoliubov - de Gennes theory. Their principal result is the existence of a bound state within the core region at finite energy with full rotational symmetry, which they assert explains the recent scanning tunneling microscopy results on YBCO single crystals. Here we argue that the approximation used in this work is fundamentally inadequate for the description of a d-wave vortex and that the obtained circular symmetry of the local density of states is an unphysical artifact of this approximation.Comment: 1 page REVTeX, to appear in PR

    Compton telescope with coded aperture mask: Imaging with the INTEGRAL/IBIS Compton mode

    Get PDF
    Compton telescopes provide a good sensitivity over a wide field of view in the difficult energy range running from a few hundred keV to several MeV. Their angular resolution is, however, poor and strongly energy dependent. We present a novel experimental design associating a coded mask and a Compton detection unit to overcome these pitfalls. It maintains the Compton performance while improving the angular resolution by at least an order of magnitude in the field of view subtended by the mask. This improvement is obtained only at the expense of the efficiency that is reduced by a factor of two. In addition, the background corrections benefit from the coded mask technique, i.e. a simultaneous measurement of the source and background. This design is implemented and tested using the IBIS telescope on board the INTEGRAL satellite to construct images with a 12' resolution over a 29 degrees x 29 degrees field of view in the energy range from 200 keV to a few MeV. The details of the analysis method and the resulting telescope performance, particularly in terms of sensitivity, are presented

    Computational Methods for the Integrative Analysis of Genomics and Pharmacological Data

    Get PDF
    Since the pioneering NCI-60 panel of the late'80's, several major screenings of genetic profiling and drug testing in cancer cell lines have been conducted to investigate how genetic backgrounds and transcriptional patterns shape cancer's response to therapy and to identify disease-specific genes associated with drug response. Historically, pharmacogenomics screenings have been largely heterogeneous in terms of investigated cell lines, assay technologies, number of compounds, type and quality of genomic data, and methods for their computational analysis. The analysis of this enormous and heterogeneous amount of data required the development of computational methods for the integration of genomic profiles with drug responses across multiple screenings. Here, we will review the computational tools that have been developed to integrate cancer cell lines' genomic profiles and sensitivity to small molecule perturbations obtained from different screenings

    Dry Friction due to Adsorbed Molecules

    Full text link
    Using an adiabatic approximation method, which searches for Tomlinson model-like instabilities for a simple but still realistic model for two crystalline surfaces in the extremely light contact limit, with mobile molecules present at the interface, sliding relative to each other, we are able to account for the virtually universal occurrence of "dry friction." The model makes important predictions for the dependence of friction on the strength of the interaction of each surface with the mobile molecules.Comment: four pages of latex, figure provide
    corecore