60 research outputs found

    Exercise and aerobic capacity in individuals with spinal cord injury:A systematic review with meta-analysis and meta-regression

    Get PDF
    BACKGROUND: A low level of cardiorespiratory fitness [CRF; defined as peak oxygen uptake (V̇O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI) and a major risk factor associated with chronic disease. However, CRF can be modified by exercise. This systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI characteristics and/or specific exercise considerations are moderators of changes in CRF.METHODS AND FINDINGS: Databases (MEDLINE, EMBASE, CENTRAL, and Web of Science) were searched from inception to March 2023. A primary meta-analysis was conducted including randomised controlled trials (RCTs; exercise interventions lasting &gt;2 weeks relative to control groups). A secondary meta-analysis pooled independent exercise interventions &gt;2 weeks from longitudinal pre-post and RCT studies to explore whether subgroup differences in injury characteristics and/or exercise intervention parameters explained CRF changes. Further analyses included cohort, cross-sectional, and observational study designs. Outcome measures of interest were absolute (AV̇O2peak) or relative V̇O2peak (RV̇O2peak), and/or PPO. Bias/quality was assessed via The Cochrane Risk of Bias 2 and the National Institute of Health Quality Assessment Tools. Certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects models were used in all meta-analyses and meta-regressions. Of 21,020 identified records, 120 studies comprising 29 RCTs, 67 pre-post studies, 11 cohort, 7 cross-sectional, and 6 observational studies were included. The primary meta-analysis revealed significant improvements in AV̇O2peak [0.16 (0.07, 0.25) L/min], RV̇O2peak [2.9 (1.8, 3.9) mL/kg/min], and PPO [9 (5, 14) W] with exercise, relative to controls (p &lt; 0.001). Ninety-six studies (117 independent exercise interventions comprising 1,331 adults with SCI) were included in the secondary, pooled meta-analysis which demonstrated significant increases in AV̇O2peak [0.22 (0.17, 0.26) L/min], RV̇O2peak [2.8 (2.2, 3.3) mL/kg/min], and PPO [11 (9, 13) W] (p &lt; 0.001) following exercise interventions. There were subgroup differences for RV̇O2peak based on exercise modality (p = 0.002) and intervention length (p = 0.01), but there were no differences for AV̇O2peak. There were subgroup differences (p ≤ 0.018) for PPO based on time since injury, neurological level of injury, exercise modality, and frequency. The meta-regression found that studies with a higher mean age of participants were associated with smaller changes in AV̇O2peak and RV̇O2peak (p &lt; 0.10). GRADE indicated a moderate level of certainty in the estimated effect for RV̇O2peak, but low levels for AV̇O2peak and PPO. This review may be limited by the small number of RCTs, which prevented a subgroup analysis within this specific study design.CONCLUSIONS: Our primary meta-analysis confirms that performing exercise &gt;2 weeks results in significant improvements to AV̇O2peak, RV̇O2peak, and PPO in individuals with SCI. The pooled meta-analysis subgroup comparisons identified that exercise interventions lasting up to 12 weeks yield the greatest change in RV̇O2peak. Upper-body aerobic exercise and resistance training also appear the most effective at improving RV̇O2peak and PPO. Furthermore, acutely injured, individuals with paraplegia, exercising for ≥3 sessions/week will likely experience the greatest change in PPO. Ageing seemingly diminishes the adaptive CRF responses to exercise training in individuals with SCI.REGISTRATION: PROSPERO: CRD42018104342.</p

    A methodological review to develop a list of bias items used to assess reviews incorporating network meta-analysis : protocol and rationale

    Get PDF
    INTRODUCTION Systematic reviews with network meta-analysis (NMA; ie, multiple treatment comparisons, indirect comparisons) have gained popularity and grown in number due to their ability to provide comparative effectiveness of multiple treatments for the same condition. The methodological review aims to develop a list of items relating to biases in reviews with NMA. Such a list will inform a new tool to assess the risk of bias in NMAs, and potentially other reporting or quality checklists for NMAs which are being updated. METHODS AND ANALYSIS We will include articles that present items related to bias, reporting or methodological quality, articles assessing the methodological quality of reviews with NMA, or papers presenting methods for NMAs. We will search Ovid MEDLINE, the Cochrane library and difficult to locate/unpublished literature. Once all items have been extracted, we will combine conceptually similar items, classifying them as referring to bias or to other aspects of quality (eg, reporting). When relevant, reporting items will be reworded into items related to bias in NMA review conclusions, and then reworded as signalling questions. ETHICS AND DISSEMINATION No ethics approval was required. We plan to publish the full study open access in a peer-reviewed journal, and disseminate the findings via social media (Twitter, Facebook and author affiliated websites). Patients, healthcare providers and policy-makers need the highest quality evidence to make decisions about which treatments should be used in healthcare practice. Being able to critically appraise the findings of systematic reviews that include NMA is central to informed decision-making in patient care

    Methodological review of NMA bias concepts provides groundwork for the development of a list of concepts for potential inclusion in a new risk of bias tool for network meta-analysis (RoB NMA Tool)

    Get PDF
    INTRODUCTION: Network meta-analyses (NMAs) have gained popularity and grown in number due to their ability to provide estimates of the comparative effectiveness of multiple treatments for the same condition. The aim of this study is to conduct a methodological review to compile a preliminary list of concepts related to bias in NMAs. METHODS AND ANALYSIS: We included papers that present items related to bias, reporting or methodological quality, papers assessing the quality of NMAs, or method papers. We searched MEDLINE, the Cochrane Library and unpublished literature (up to July 2020). We extracted items related to bias in NMAs. An item was excluded if it related to general systematic review quality or bias and was included in currently available tools such as ROBIS or AMSTAR 2. We reworded items, typically structured as questions, into concepts (i.e. general notions). RESULTS: One hundred eighty-one articles were assessed in full text and 58 were included. Of these articles, 12 were tools, checklists or journal standards; 13 were guidance documents for NMAs; 27 were studies related to bias or NMA methods; and 6 were papers assessing the quality of NMAs. These studies yielded 99 items of which the majority related to general systematic review quality and biases and were therefore excluded. The 22 items we included were reworded into concepts specific to bias in NMAs. CONCLUSIONS: A list of 22 concepts was included. This list is not intended to be used to assess biases in NMAs, but to inform the development of items to be included in our tool

    Knowledge user survey and Delphi process to inform development of a new risk of bias tool to assess systematic reviews with network meta-analysis (RoB NMA tool)

    Get PDF
    Background: Network meta-analysis (NMA) is increasingly used in guideline development and other aspects of evidence-based decision-making. We aimed to develop a risk of bias (RoB) tool to assess NMAs (RoB NMA tool). An international steering committee recommended that the RoB NMA tool to be used in combination with the Risk of Bias in Systematic reviews (ROBIS) tool (i.e. because it was designed to assess biases only) or other similar quality appraisal tools (eg, A MeaSurement Tool to Assess systematic Reviews 2 [AMSTAR 2]) to assess quality of systematic reviews. The RoB NMA tool will assess NMA biases and limitations regarding how the analysis was planned, data were analysed and results were presented, including the way in which the evidence was assembled and interpreted. Objectives: Conduct (a) a Delphi process to determine expert opinion on an item's inclusion and (b) a knowledge user survey to widen its impact. Design: Cross-sectional survey and Delphi process. Methods: Delphi panellists were asked to rate whether items should be included. All agreed-upon item were included in a second round of the survey (defined as 70% agreement). We surveyed knowledge users' views and preferences about the importance, utility and willingness to use the RoB NMA tool to evaluate evidence in practice and in policymaking. We included 12 closed and 10 open-ended questions, and we followed a knowledge translation plan to disseminate the survey through social media and professional networks. Results: 22 items were entered into a Delphi survey of which 28 respondents completed round 1, and 22 completed round 2. Seven items did not reach consensus in round 2. A total of 298 knowledge users participated in the survey (14% respondent rate). 75% indicated that their organisation produced NMAs, and 78% showed high interest in the tool, especially if they had received adequate training (84%). Most knowledge users and Delphi panellists preferred a tool to assess both bias in individual NMA results and authors' conclusions. Response bias in our sample is a major limitation as knowledge users working in high-income countries were more represented. One of the limitations of the Delphi process is that it depends on the purposive selection of experts and their availability, thus limiting the variability in perspectives and scientific disciplines. Conclusions: This Delphi process and knowledge user survey informs the development of the RoB NMA tool

    Surgery and risk for multiple sclerosis: a systematic review and meta-analysis of case–control studies

    Full text link

    Database combinations to retrieve systematic reviews in overviews of reviews: a methodological study

    No full text
    Background: When conducting an Overviews of Reviews on health-related topics, it is unclear which combination of bibliographic databases authors should use for searching for SRs. Our goal was to determine which databases included the most systematic reviews and identify an optimal database combination for searching systematic reviews. Methods: A set of 86 Overviews of Reviews with 1219 included systematic reviews was extracted from a previous study. Inclusion of the systematic reviews was assessed in MEDLINE, CINAHL, Embase, Epistemonikos, PsycINFO, and TRIP. The mean inclusion rate (% of included systematic reviews) and corresponding 95% confidence interval were calculated for each database individually, as well as for combinations of MEDLINE with each other database and reference checking. Results: Inclusion of systematic reviews was higher in MEDLINE than in any other single database (mean inclusion rate 89.7%; 95% confidence interval [89.0–90.3%]). Combined with reference checking, this value increased to 93.7% [93.2–94.2%]. The best combination of two databases plus reference checking consisted of MEDLINE and Epistemonikos (99.2% [99.0–99.3%]). Stratification by Health Technology Assessment reports (97.7% [96.5–98.9%]) vs. Cochrane Overviews (100.0%) vs. non-Cochrane Overviews (99.3% [99.1–99.4%]) showed that inclusion was only slightly lower for Health Technology Assessment reports. However, MEDLINE, Epistemonikos, and reference checking remained the best combination. Among the 10/1219 systematic reviews not identified by this combination, five were published as websites rather than journals, two were included in CINAHL and Embase, and one was included in the database ERIC. Conclusions: MEDLINE and Epistemonikos, complemented by reference checking of included studies, is the best database combination to identify systematic reviews on health-related topics.Medicine, Faculty ofOther UBCNon UBCAnesthesiology, Pharmacology and Therapeutics, Department ofReviewedFacult

    Managing overlap of primary study results across systematic reviews: practical considerations for authors of overviews of reviews

    No full text
    Background Overviews often identify and synthesise a large number of systematic reviews on the same topic, which is likely to lead to overlap (i.e. duplication) in primary studies across the reviews. Using a primary study result multiple times in the same analysis overstates its sample size and number of events, falsely leading to greater precision in the analysis. This paper aims to: (a) describe types of overlapping data that arise from the same primary studies reported across multiple reviews, (b) describe methods to identify and explain overlap of primary study data, and (c) present six case studies illustrating different approaches to manage overlap. Methods We first updated the search in PubMed for methods from the MOoR framework relating to overlap of primary studies. One author screened the studies titles and abstracts, and any full-text articles retrieved, extracted methods data relating to overlap of primary studies and mapped it to the overlap methods from the MOoR framework. We also describe six case studies as examples of overviews that use specific overlap methods across the steps in the conduct of an overview. For each case study, we discuss potential methodological implications in terms of limitations, efficiency, usability, and resource use. Results Nine methods studies were found and mapped to the methods identified by the MOoR framework to address overlap. Overlap methods were mapped across four steps in the conduct of an overview – the eligibility criteria step, the data extraction step, the assessment of risk of bias step, and the synthesis step. Our overview case studies used multiple methods to reduce overlap at different steps in the conduct of an overview. Conclusions Our study underlines that there is currently no standard methodological approach to deal with overlap in primary studies across reviews. The level of complexity when dealing with overlap can vary depending on the yield, trends and patterns of the included literature and the scope of the overview question. Choosing a method might be dependent on the number of included reviews and their primary studies. Gaps in evaluation of methods to address overlap were found and further investigation in this area is needed.Medicine, Faculty ofNon UBCAnesthesiology, Pharmacology and Therapeutics, Department ofReviewedFacult

    Evidence map of studies evaluating methods for conducting, interpreting and reporting overviews of systematic reviews of interventions:Rationale and design

    Get PDF
    BACKGROUND: Overviews of systematic reviews attempt to systematically retrieve and summarise the results of multiple systematic reviews into a single document. Methods for conducting, interpreting and reporting overviews of reviews are in their infancy. To date, there has been no systematic review or evidence map examining the range of methods for overviews nor of the evidence for using these methods. The objectives of the study are to develop and populate a framework of methods that have or may be used in conducting, interpreting and reporting overviews of systematic reviews of interventions (stage I); create an evidence map of studies that have evaluated these methods (stage II); and identify and describe unique methodological challenges of overviews. METHODS: The research will be undertaken in two stages. For both stages, we plan to search methods collections (e.g. Cochrane Methodology Register, Meth4ReSyn library, AHRQ Effective Health Care Program) to identify eligible studies. These searches will be supplemented by searching reference lists and citation searching. Stage I: Methods used in overviews will be identified from articles describing methods for overviews, methods studies examining a cross section/cohort of overviews, guidance documents and commentaries. The identified methods will populate a framework of available methods for conducting an overview. Two reviewers will independently code included studies to develop the framework. Thematic analysis of the coded data will be used to categorise and describe methods. Stage II: Evaluations of the performance of methods will be identified from systematic reviews of methods studies and methods studies. Evaluations will be described and mapped to the framework of methods identified in stage I. DISCUSSION: The results of this process will be useful for mapping of methods for overviews of systematic reviews, informing guidance and identifying and prioritising method research in this field. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13643-015-0178-0) contains supplementary material, which is available to authorized users

    Toward a comprehensive evidence map of overview of systematic review methods: paper 2—risk of bias assessment; synthesis, presentation and summary of the findings; and assessment of the certainty of the evidence

    No full text
    Abstract Background Overviews of systematic reviews (SRs) attempt to systematically retrieve and summarise the results of multiple systematic reviews. This is the second of two papers from a study aiming to develop a comprehensive evidence map of the methods used in overviews. Our objectives were to (a) develop a framework of methods for conducting, interpreting and reporting overviews (stage I)—the Methods for Overviews of Reviews (MOoR) framework—and (b) to create an evidence map by mapping studies that have evaluated overview methods to the framework (stage II). In the first paper, we reported findings for the four initial steps of an overview (specification of purpose, objectives and scope; eligibility criteria; search methods; data extraction). In this paper, we report the remaining steps: assessing risk of bias; synthesis, presentation and summary of the findings; and assessing certainty of the evidence arising from the overview. Methods In stage I, we identified cross-sectional studies, guidance documents and commentaries that described methods proposed for, or used in, overviews. Based on these studies, we developed a framework of possible methods for overviews, categorised by the steps in conducting an overview. Multiple iterations of the framework were discussed and refined by all authors. In stage II, we identified studies evaluating methods and mapped these evaluations to the framework. Results Forty-two stage I studies described methods relevant to one or more of the latter steps of an overview. Six studies evaluating methods were included in stage II. These mapped to steps involving (i) the assessment of risk of bias (RoB) in SRs (two SRs and three primary studies, all reporting evaluation of RoB tools) and (ii) the synthesis, presentation and summary of the findings (one primary study evaluating methods for measuring overlap). Conclusion Many methods have been described for use in the latter steps in conducting an overview; however, evaluation and guidance for applying these methods is sparse. The exception is RoB assessment, for which a multitude of tools exist—several with sufficient evaluation and guidance to recommend their use. Evaluation of other methods is required to provide a comprehensive evidence map
    • …
    corecore