25 research outputs found

    Diverse Bacteria Are Pathogens of Caenorhabditis elegans

    No full text
    Practically and ethically attractive as model systems, invertebrate organisms are increasingly recognized as relevant for the study of bacterial pathogenesis. We show here that the nematode Caenorhabditis elegans is susceptible to a surprisingly broad range of bacteria and may constitute a useful model for the study of both pathogens and symbionts

    Multiple neural bHLHs ensure the precision of a neuronal specification event in C. elegans

    No full text
    International audienceNeural bHLH transcription factors play a key role in the early steps of neuronal specification in many animals. We have previously observed that the Achaete-Scute HLH-3, the Olig HLH-16 and their binding partner the E protein HLH-2 activate the terminal differentiation program of a specific class of cholinergic neurons, AIY, in C. elegans. Here we identify a role for a fourth bHLH, the Neurogenin NGN-1, in this process, raising the question of why so many neural bHLHs are required for a single neuronal specification event. Using quantitative imaging we show that the combined action of different bHLHs is needed to activate the correct level of expression of the terminal selector transcription factors TTX-3 and CEH-10 that subsequently initiate and maintain the expression of a large battery of terminal differentiation genes. Surprisingly, the different bHLHs have an antagonistic effect on another target, the proapoptotic BH3-only factor EGL-1, normally not expressed in AIY and otherwise detrimental for its specification. We propose that the use of multiple neural bHLHs allows robust neuronal specification while, at the same time, preventing spurious activation of deleterious genes

    PRC1 chromatin factors strengthen the consistency of neuronal cell fate specification and maintenance in C. elegans

    No full text
    International audienceIn the nervous system, the specific identity of a neuron is established and maintained by terminal selector transcription factors that directly activate large batteries of terminal differentiation genes and positively regulate their own expression via feedback loops. However, how this is achieved in a reliable manner despite noise in gene expression, genetic variability or environmental perturbations remains poorly understood. We addressed this question using the AIY cholinergic interneurons of C. elegans, whose specification and differentiation network is well characterized. Via a genetic screen, we found that a loss of function of PRC1 chromatin factors induces a stochastic loss of AIY differentiated state in a small proportion of the population. PRC1 factors act directly in the AIY neuron and independently of PRC2 factors. By quantifying mRNA and protein levels of terminal selector transcription factors in single neurons, using smFISH and CRISPR tagging, we observed that, in PRC1 mutants, terminal selector expression is still initiated during embryonic development but the level is reduced, and expression is subsequently lost in a stochastic manner during maintenance phase in part of the population. We also observed variability in the level of expression of terminal selectors in wild type animals and, using correlation analysis, established that this noise comes from both intrinsic and extrinsic sources. Finally, we found that PRC1 factors increase the resistance of AIY neuron fate to environmental stress, and also secure the terminal differentiation of other neuron types. We propose that PRC1 factors contribute to the consistency of neuronal cell fate specification and maintenance by protecting neurons against noise and perturbations in their differentiation program

    Anti-Fungal Innate Immunity in C. elegans Is Enhanced by Evolutionary Diversification of Antimicrobial Peptides

    Get PDF
    International audienceEncounters with pathogens provoke changes in gene transcription that are an integral part of host innate immune responses. In recent years, studies with invertebrate model organisms have given insights into the origin, function, and evolution of innate immunity. Here, we use genome-wide transcriptome analysis to characterize the consequence of natural fungal infection in Caenorhabditis elegans. We identify several families of genes encoding putative antimicrobial peptides (AMPs) and proteins that are transcriptionally up-regulated upon infection. Many are located in small genomic clusters. We focus on the nlp-29 cluster of six AMP genes and show that it enhances pathogen resistance in vivo. The same cluster has a different structure in two other Caenorhabditis species. A phylogenetic analysis indicates that the evolutionary diversification of this cluster, especially in cases of intra-genomic gene duplications, is driven by natural selection. We further show that upon osmotic stress, two genes of the nlp-29 cluster are strongly induced. In contrast to fungus-induced nlp expression, this response is independent of the p38 MAP kinase cascade. At the same time, both involve the epidermal GATA factor ELT-3. Our results suggest that selective pressure from pathogens influences intra-genomic diversification of AMPs and reveal an unexpected complexity in AMP regulation as part of the invertebrate innate immune response

    Antifungal innate immunity in C. elegans: PKCdelta links G protein signaling and a conserved p38 MAPK cascade.

    No full text
    International audienceLike other multicellular organisms, the model nematode C. elegans responds to infection by inducing the expression of defense genes. Among the genes upregulated in response to a natural fungal pathogen is nlp-29, encoding an antimicrobial peptide. In a screen for mutants that fail to express nlp-29 following fungal infection, we isolated alleles of tpa-1, homologous to the mammalian protein kinase C (PKC) delta. Through epistasis analyses, we demonstrate that C. elegans PKC acts through the p38 MAPK pathway to regulate nlp-29. This involves G protein signaling and specific C-type phospholipases acting upstream of PKCdelta. Unexpectedly and unlike in mammals, tpa-1 does not act via D-type protein kinases, but another C. elegans PKC gene, pkc-3, functions nonredundantly with tpa-1 to control nlp-29 expression. Finally, the tribbles-like kinase nipi-3 acts upstream of PKCdelta in this antifungal immune signaling cascade. These findings greatly expand our understanding of the pathways involved in C. elegans innate immunity

    Inducible antibacterial defense system in C. elegans.

    Get PDF
    International audienceThe term innate immunity refers to a number of evolutionary ancient mechanisms that serve to defend animals and plants against infection. Genetically tractable model organisms, especially Drosophila, have contributed greatly to advances in our understanding of mammalian innate immunity. Essentially, nothing is known about immune responses in the nematode Caenorhabditis elegans. Using high-density cDNA microarrays, we show here that infection of C. elegans by the Gram-negative bacterium Serratia marcescens provokes a marked upregulation of the expression of many genes. Among the most robustly induced are genes encoding lectins and lysozymes, known to be involved in immune responses in other organisms. Certain infection-inducible genes are under the control of the DBL-1/TGFbeta pathway. We found that dbl-1 mutants exhibit increased susceptibility to infection. Conversely, overexpression of the lysozyme gene lys-1 augments the resistance of C. elegans to S. marcescens. These results constitute the first demonstration of inducible antibacterial defenses in C. elegans and open new avenues for the investigation of evolutionary conserved mechanisms of innate immunity

    XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans.

    Get PDF
    Mutations in the XNP/ATR-X gene cause several X-linked mental retardation syndromes in humans. The XNP/ATR-X gene encodes a DNA-helicase belonging to the SNF2 family. It has been proposed that XNP/ATR-X might be involved in chromatin remodelling. The lack of a mouse model for the ATR-X syndrome has, however, hampered functional studies of XNP/ATR-X. C. elegans possesses one homolog of the XNP/ATR-X gene, named xnp-1. By analysing a deletion mutant, we show that xnp-1 is required for the development of the embryo and the somatic gonad. Moreover, we show that abrogation of xnp-1 function in combination with inactivation of genes of the NuRD complex, as well as lin-35/Rb and hpl-2/HP1 leads to a stereotyped block of larval development with a cessation of growth but not of cell division. We also demonstrate a specific function for xnp-1 together with lin-35 or hpl-2 in the control of transgene expression, a process known to be dependent on chromatin remodelling. This study thus demonstrates that in vivo XNP-1 acts in association with RB, HP1 and the NuRD complex during development
    corecore