28 research outputs found

    CD9 Tetraspanin: A New Pathway for the Regulation of Inflammation?

    Get PDF
    CD9 belongs to the tetraspanin superfamily. Depending on the cell type and associated molecules, CD9 has a wide variety of biological activities such as cell adhesion, motility, metastasis, growth, signal transduction, differentiation, and sperm–egg fusion. This review focuses on CD9 expression by hematopoietic cells and its role in modulating cellular processes involved in the regulation of inflammation. CD9 is functionally very important in many diseases and is involved either in the regulation or in the mediation of the disease. The role of CD9 in various diseases, such as viral and bacterial infections, cancer and chronic lung allograft dysfunction, is discussed. This review focuses also on its interest as a biomarker in diseases. Indeed CD9 is primarily known as a specific exosome marker however, its expression is now recognized as an anti-inflammatory marker of monocytes and macrophages. It was also described as a marker of murine IL-10-competent Breg cells and IL-10-secreting CD9+ B cells were associated with better allograft outcome in lung transplant patients, and identified as a new predictive biomarker of long-term survival. In the field of cancer, CD9 was both identified as a favorable prognostic marker or as a predictor of metastatic potential depending on cancer types. Finally, this review discusses strategies to target CD9 as a therapeutic tool. Because CD9 can have opposite effects depending on the situation, the environment and the pathology, modulating CD9 expression or blocking its effects seem to be a new promising therapeutic strategy

    CD9+ Regulatory B Cells Induce T Cell Apoptosis via IL-10 and Are Reduced in Severe Asthmatic Patients

    Get PDF
    CD9 was recently identified as a marker of murine IL-10-competent regulatory B cells. Functional impairments or defects in CD9+ IL-10-secreting regulatory B cells are associated with enhanced asthma-like inflammation and airway hyperresponsiveness. In mouse models, all asthma-related features can be abrogated by CD9+ B cell adoptive transfer. We aimed herein to decipher the profiles, features, and molecular mechanisms of the regulatory properties of CD9+ B cells in human and mouse. The profile of CD9+ B cells was analyzed using blood from severe asthmatic patients and normal and asthmatic mice by flow cytometry. The regulatory effects of mouse CD9+ B cells on effector T cell death, cell cycle arrest, apoptosis, and mitochondrial depolarization were determined using yellow dye, propidium iodide, Annexin V, and JC-1 staining. MAPK phosphorylation was analyzed by western blotting. Patients with severe asthma and asthmatic mice both harbored less CD19+CD9+ B cells, although these cells displayed no defect in their capacity to induce T cell apoptosis. Molecular mechanisms of regulation of CD9+ B cells characterized in mouse showed that they induced effector T cell cycle arrest in sub G0/G1, leading to apoptosis in an IL-10-dependent manner. This process occurred through MAPK phosphorylation and activation of both the intrinsic and extrinsic pathways. This study characterizes the molecular mechanisms underlying the regulation of CD9+ B cells to induce effector T cell apoptosis in mice and humans via IL-10 secretion. Defects in CD9+ B cells in blood from patients with severe asthma reveal new insights into the lack of regulation of inflammation in these patients

    Maternal prebiotic supplementation impacts colitis development in offspring mice

    Get PDF
    Background and aimsMaternal diet plays a key role in preventing or contributing to the development of chronic diseases, such as obesity, allergy, and brain disorders. Supplementation of maternal diet with prebiotics has been shown to reduce the risk of food allergies and affect the intestinal permeability in offspring later in life. However, its role in modulating the development of other intestinal disorders, such as colitis, remains unknown. Therefore, we investigated the effects of prebiotic supplementation in pregnant mice on the occurrence of colitis in their offspring.Materials and methodsOffspring from mothers, who were administered prebiotic galacto-oligosaccharides and inulin during gestation or fed a control diet, were subjected to three cycles of dextran sulphate sodium (DSS) treatment to induce chronic colitis, and their intestinal function and disease activity were evaluated. Colonic remodelling, gut microbiota composition, and lipidomic and transcriptomic profiles were also assessed.ResultsDSS-treated offspring from prebiotic-fed mothers presented a higher disease score, increased weight loss, and increased faecal humidity than those from standard diet-fed mothers. DSS-treated offspring from prebiotic-fed mothers also showed increased number of colonic mucosal lymphocytes and macrophages than the control group, associated with the increased colonic concentrations of resolvin D5, protectin DX, and 14-hydroxydocosahexaenoic acid, and modulation of colonic gene expression. In addition, maternal prebiotic supplementation induced an overabundance of eight bacterial families and a decrease in the butyrate caecal concentration in DSS-treated offspring.ConclusionMaternal prebiotic exposure modified the microbiota composition and function, lipid content, and transcriptome of the colon of the offspring. These modifications did not protect against colitis, but rather sensitised the mice to colitis development

    Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies

    No full text
    Introduction: Prebiotics, probiotics and synbiotics are known to have major beneficial effects on human health due to their ability to modify the composition and the function of the gut mucosa, the gut microbiota and the immune system. These components largely function in a healthy population throughout different periods of life to confer homeostasis. Indeed, they can modulate the composition of the gut microbiota by increasing bacteria strands that are beneficial for health, such as Firmicute and Bifidobacteria, and decreasing harmful bacteria, such as Enteroccocus. Their immunomodulation properties have been extensively studied in different innate cells (dendritic cells, macrophages, monocytes) and adaptive cells (Th, Treg, B cells). They can confer a protolerogenic environment but also modulate pro-inflammatory responses. Due to all these beneficial effects, these compounds have been investigated to prevent or to treat different diseases, such as cancer, diabetes, allergies, autoimmune diseases, etc. Regarding the literature, the effects of these components on dendritic cells, monocytes and T cells have been studied and presented in a number of reviews, but their impact on B-cell response has been less widely discussed. Conclusions: For the first time, we propose here a review of the literature on the immunomodulation of B-lymphocytes response by prebiotics, probiotics and synbiotics, both in healthy conditions and in pathologies. Discussion: Promising studies have been performed in animal models, highlighting the potential of prebiotics, probiotics and synbiotics intake to treat or to prevent diseases associated with B-cell immunomodulation, but this needs to be validated in humans with a full characterization of B-cell subsets and not only the humoral response

    Regulation of the Immune Response by the Inflammatory Metabolic Microenvironment in the Context of Allotransplantation.

    No full text
    International audienceAntigen challenge induced by allotransplantation results in the activation of T and B cells, followed by their differentiation and proliferation to mount an effective immune response. Metabolic fitness has been shown to be crucial for supporting the major shift from quiescent to active immune cells and for tuning the immune response. Metabolic reprogramming includes regulation of the balance between glycolysis and mitochondrial respiration processes. Recent research has shed new light on the functions served by the end products of metabolism such as lactate, acetate, and ATP. At enhanced local concentrations, these metabolites have complex effects in which they not only induce T and B cell responses, cell mobility, and cytokine secretion but also favor the resolution of inflammation by promoting regulatory functions. Such mechanisms are instrumental in the context of the immune response in transplantation, not only to protect the graft and/or eliminate cells targeting it but also to maintain cell homeostasis per se. Metabolic adaptation thus plays an instrumental role on the outcome of the cellular and humoral responses. This, of course, raises the possibility of drugs that would interfere in these metabolic pathways to control the immune response but also highlights the risk that some drugs may perturb this metabolism and cell homeostasis and be deleterious for graft outcome. This review focuses on how metabolic alterations of the local immune microenvironment regulate the immune response and the impact of metabolic manipulation in allotransplantation

    Blood CD9 + B cell, a biomarker of bronchiolitis obliterans syndrome after lung transplantation

    Full text link
    Bronchiolitis obliterans syndrome is the main limitation for long‐term survival after lung transplantation. Some specific B cell populations are associated with long‐term graft acceptance. We aimed to monitor the B cell profile during early development of bronchiolitis obliterans syndrome after lung transplantation. The B cell longitudinal profile was analyzed in peripheral blood mononuclear cells from patients with bronchiolitis obliterans syndrome and patients who remained stable over 3 years of follow‐up. CD24hiCD38hi transitional B cells were increased in stable patients only, and reached a peak 24 months after transplantation, whereas they remained unchanged in patients who developed a bronchiolitis obliterans syndrome. These CD24hiCD38hi transitional B cells specifically secrete IL‐10 and express CD9. Thus, patients with a total CD9+ B cell frequency below 6.6% displayed significantly higher incidence of bronchiolitis obliterans syndrome (AUC = 0.836, PPV = 0.75, NPV = 1). These data are the first to associate IL‐10‐secreting CD24hiCD38hi transitional B cells expressing CD9 with better allograft outcome in lung transplant recipients. CD9‐expressing B cells appear as a contributor to a favorable environment essential for the maintenance of long‐term stable graft function and as a new predictive biomarker of bronchiolitis obliterans syndrome–free survival

    Role of JAK inhibitors and immune cells in transplantation

    No full text
    International audienceImmunosuppressive challenge after transplantation has dual objectives, namely, to efficiently inhibit immune populations involved in acute, chronic, humoral or cellular transplant rejection while minimizing the effect on immune integrity toward pathogens. The current immunosuppressive strategies show limited efficacy and remain associated with strong side effects, and thus, it is essential to develop new strategies. The use of Janus kinase (JAK) inhibitors is one of the new strategies focusing on cytokine pathways. Specifically, the first-generation JAK inhibitors (JAKis) showed low specificity toward the four known JAK molecules and did not exhibit better effects than calcineurin inhibitors, which constitute the standard treatment posttransplantation. However, because the new generation of JAKis present higher specificity, we are gaining further insights on the response of cells to these inhibitions. This review focuses on the impact of JAKis on different immune cell subsets, focusing on their role in transplantation

    Prebiotics: mechanisms and preventive effects in allergy.

    No full text
    Allergic diseases now affect over 30% of individuals in many communities, particularly young children, underscoring the need for effective prevention strategies in early life. These allergic conditions have been linked to environmental and lifestyle changes driving the dysfunction of three interdependent biological systems: microbiota, epithelial barrier and immune system. While this is multifactorial, dietary changes are of particular interest in the altered establishment and maturation of the microbiome, including the associated profile of metabolites that modulate immune development and barrier function. Prebiotics are non-digestible food ingredients that beneficially influence the health of the host by 1) acting as a fermentable substrate for some specific commensal host bacteria leading to the release of short-chain fatty acids in the gut intestinal tract influencing many molecular and cellular processes; 2) acting directly on several compartments and specifically on different patterns of cells (epithelial and immune cells). Nutrients with prebiotic properties are therefore of central interest in allergy prevention for their potential to promote a more tolerogenic environment through these multiple pathways. Both observational studies and experimental models lend further credence to this hypothesis. In this review, we describe both the mechanisms and the therapeutic evidence from preclinical and clinical studies exploring the role of prebiotics in allergy prevention

    Der p 2.1 Peptide Abrogates House Dust Mites-Induced Asthma Features in Mice and Humanized Mice by Inhibiting DC-Mediated T Cell Polarization

    No full text
    International audienceAsthma is a chronic airway disease often due to sensitization to aeroallergens, especially house dust mite allergens (HDMs). The Dermatophagoides pteronyssinus group 2 (Der p 2), is one of the most representative HDM allergens and is recognized by more than 90% of HDM-allergic patients. In mouse models, all asthma-related features can be prevented by prophylactic administration of Dermatophagoides pteronyssinus 2-derived peptide (Der p 2.1). However, it is unknown whether it is able to treat well-established asthma in mice and humans. We aimed here to evaluate the efficacy of Der p 2.1 immunotherapy in a mouse, humanized mouse, and asthmatic patients. Asthma related-features were analyzed through airway hyperresponsiveness (AHR), allergen-specific IgE, and lung histology in mice and humanized mice. Immune profile was analyzed using lung and blood from mice and severe asthmatic patients respectively. T cell and dendritic cell (DC) polarization was evaluated using co-culture of bone marrow derived cells (BMDCs) and naive T cell from naive mice. Mice and humanized mice both have a reduced AHR, lung tissue alteration, and HDM-specific IgE under Der p 2.1 treatment. Concerning the immune profile, T helper 2 cells (Th2) and T helper 17 cells (Th17) were significantly reduced in both mice and humanized mice lung and in peripheral blood mononuclear cells (PBMCs) from severe asthmatic patients after Der p 2.1 incubation. The downregulation of T cell polarization seems to be linked to an increase of IL-10-secreting DC under Der p 2.1 treatment in both mice and severe asthmatic patients. This study shows that allergen-derived peptide immunotherapy abrogates asthma-related features in mice and humanized mice by reducing Th2 and Th17 cells polarization via IL-10-secreting DC. These results suggest that Der p 2.1 peptide immunotherapy could be a promising approach to treat both Th2 and Th17 immunity in asthma
    corecore