19 research outputs found

    Aberrante Aktivierung der Rezeptortyrosinkinase FLT3 in der akuten myeloischen Leukämie

    Get PDF
    In der akuten myeloischen Leukämie (AML) sind zwei Cluster aktivierender Mutationen im ´FMS-like tyrosine kinase-3´ (FLT3)-Gen bekannt: FLT3-´internal tandem duplications´ (FLT3-ITD) in der juxtamembranösen (JM)-Domäne in 20 - 25 % der Patienten und FLT3-Punktmutationen in der Tyrosinkinasedomäne (FLT3-TKD) in 7 – 10 % der Patienten. In dieser Studie haben wir eine neue Klasse aktivierender Punktmutationen (PM) charakterisiert, die in einem 16-Aminosäuren-Abschnitt der JM-Domäne von FLT3 (FLT3-JM-PM) lokalisiert sind. Die Expression von vier FLT3-JM-PM in IL-3-abhängigen Ba/F3-Zellen führte zu wachstumsfaktor-unabhängigem Wachstum, Hyperproliferation in Gegenwart von FL und Resistenz gegenüber apoptotischem Zelltod. FLT3-JM-PM-Rezeptoren waren autophosphoryliert und zeigten verglichen mit FLT3-WT-Rezeptoren eine höhere konstitutive Dimerisierungsrate. Als einen molekularen Mechanismus konnten wir die Aktivierung von STAT5 und eine erhöhte Expression von Bcl-x(L) in allen FLT3-JM-PM-exprimierenden Zellen im Vergleich zu FLT3-WT-Zellen zeigen. Der FLT3-Inhibitor PKC412 inhibierte das wachstumsfaktor-unabhängige Wachstum der FLT3-JM-PM-Zellen. Verglichen mit FLT3-ITD- und FLT3-TKD-Zellen, zeigten die FLT3-JM-PM-Zellen ein schwächeres Transformationspotential, verbunden mit geringerer Autophosphorylierung des Rezeptors und dessen nachgeordneten Ziel-Protein STAT5. Die Kartierung der FLT3-JM-PM auf die Kristallstruktur des FLT3-Proteins zeigte, dass diese Punktmutationen wahrscheinlich die Stabilität der autoinhibitorischen JM-Domäne reduzieren. Dies liefert eine strukturelle Erklärung für das transformierende Potential dieser neuen Klasse aktivierender Mutationen von FLT3. Die defekte Negativ-Regulation aktivierter Rezeptortyrosinkinasen (RTKs) ist ein bekannter Mechanismus der Onkogenese. Die RTK FLT3 wird in frühen myeloischen und lymphoiden Progenitorzellen exprimiert und ist an der Pathogenese der AML beteiligt. Das ´Casitas B-lineage lymphoma´ (CBL)-Protein ist in der Evolution stark konserviert und übernimmt wichtige Funktionen in der Negativ-Regulation der Signalübertragung verschiedener Zelloberflächenrezeptoren. Zwei CBL-Deletionsmutanten, die in vitro Fibroblasten transformieren, wurden aus murinen Retroviren isoliert, die Vorläufer-B-Zelllymphome induzieren. In dieser Arbeit konnte gezeigt werden, dass CBL nach FL-Stimulierung von FLT3-WT-exprimierenden Ba/F3-Zellen phosphoryliert wird und damit in die FLT3-nachgeordnete Signaltransduktion involviert ist. Die Koexpression der CBL-Deletionsmutanten CBL-70Z oder v-CBL mit FLT3 führt zur Transformation von Ba/F3-Zellen. Das transformierende Potential wird durch den FLT3-Rezeptor vermittelt, da die selektiven FLT3-PTK-Inhibitoren SU5614 und PKC412 die Proliferation der FLT3-WT/CBL-mutanten-Zellen vollständig aufheben. Die Aktivierung des PI3K/mTOR/AKT-Signalweges, jedoch nicht der SRC-Kinasen und MAPK, trägt wesentlich zum hyperproliferierenden Phänotyp der FLT3-WT/CBL-mutanten Zellen nach Ligandenstimulierung bei. Die Koexpression von CBL-70Z oder v-CBL mit FLT3 führt zur konstitutiven Aktivierung der FLT3-Rezeptoren sowie STAT5 und AKT. Nach FL-Stimulierung konnten wir eine Hyperaktivierung von STAT5 und AKT in FLT3-WT/CBL-70Z und FLT3-WT/v-CBL-Zellen beobachten. An der Interaktion von CBL und FLT3 sind die TKB-Domäne des CBL-Proteins und die JM-Tyrosine Y589 und Y599 des FLT3-Rezeptors beteiligt. Die Internalisierung der FLT3-Rezeptoren wird durch die Koexpression von CBL-70Z nicht verändert. Allerdings ist CBL an der Ubiquitinierung und Degradierung von Rezeptoren beteiligt und wir konnten zeigen, dass CBL-WT die Dephosphorylierung und Degradierung des FLT3-Rezeptors fördert. Es wurde vorgeschlagen, dass die CBL-Deletionsmutanten in dominant-negativer Weise agieren und die negativ-regulatorische Funktion von CBL-WT blockieren. Wir haben eine CBL-Deletionsmutante in den AML Zelllinie MOLM-13 und MOLM-14 identifiziert. Dieser CBL-Mutante fehlt Exon 8, das für Teile der Linker- und RING-Finger-Domäne kodiert, und erinnert an CBL-70Z. Die Entdeckung einer möglicherweise transformierenden CBL-Mutante in AML-Zellen unterstützt die Hypothese, dass CBL zum malignen Phänotyp der AML beiträgt. Zusammenfassend haben wir gezeigt, dass die strukturelle oder funktionelle Inaktivierung negativ-regulatorischer Mechanismen das transformierende Potential von FLT3 aktivieren kann: 1. Der Verlust der Autoinhibition durch Punktmutationen, die die geordnete Konformation der autoinhibitorischen JM-Domäne stören. 2. Die funktionelle Inaktivierung eines negativ-regulatorischen Proteins durch ´loss-of-function´-Mutationen. Diese Daten unterstreichen die zentrale Rolle von FLT3 in der Leukämogenese und als ein Zielprotein für therapeutische Ansätze

    Aberrante Aktivierung der Rezeptortyrosinkinase FLT3 in der akuten myeloischen Leukämie

    Get PDF
    In der akuten myeloischen Leukämie (AML) sind zwei Cluster aktivierender Mutationen im ´FMS-like tyrosine kinase-3´ (FLT3)-Gen bekannt: FLT3-´internal tandem duplications´ (FLT3-ITD) in der juxtamembranösen (JM)-Domäne in 20 - 25 % der Patienten und FLT3-Punktmutationen in der Tyrosinkinasedomäne (FLT3-TKD) in 7 – 10 % der Patienten. In dieser Studie haben wir eine neue Klasse aktivierender Punktmutationen (PM) charakterisiert, die in einem 16-Aminosäuren-Abschnitt der JM-Domäne von FLT3 (FLT3-JM-PM) lokalisiert sind. Die Expression von vier FLT3-JM-PM in IL-3-abhängigen Ba/F3-Zellen führte zu wachstumsfaktor-unabhängigem Wachstum, Hyperproliferation in Gegenwart von FL und Resistenz gegenüber apoptotischem Zelltod. FLT3-JM-PM-Rezeptoren waren autophosphoryliert und zeigten verglichen mit FLT3-WT-Rezeptoren eine höhere konstitutive Dimerisierungsrate. Als einen molekularen Mechanismus konnten wir die Aktivierung von STAT5 und eine erhöhte Expression von Bcl-x(L) in allen FLT3-JM-PM-exprimierenden Zellen im Vergleich zu FLT3-WT-Zellen zeigen. Der FLT3-Inhibitor PKC412 inhibierte das wachstumsfaktor-unabhängige Wachstum der FLT3-JM-PM-Zellen. Verglichen mit FLT3-ITD- und FLT3-TKD-Zellen, zeigten die FLT3-JM-PM-Zellen ein schwächeres Transformationspotential, verbunden mit geringerer Autophosphorylierung des Rezeptors und dessen nachgeordneten Ziel-Protein STAT5. Die Kartierung der FLT3-JM-PM auf die Kristallstruktur des FLT3-Proteins zeigte, dass diese Punktmutationen wahrscheinlich die Stabilität der autoinhibitorischen JM-Domäne reduzieren. Dies liefert eine strukturelle Erklärung für das transformierende Potential dieser neuen Klasse aktivierender Mutationen von FLT3. Die defekte Negativ-Regulation aktivierter Rezeptortyrosinkinasen (RTKs) ist ein bekannter Mechanismus der Onkogenese. Die RTK FLT3 wird in frühen myeloischen und lymphoiden Progenitorzellen exprimiert und ist an der Pathogenese der AML beteiligt. Das ´Casitas B-lineage lymphoma´ (CBL)-Protein ist in der Evolution stark konserviert und übernimmt wichtige Funktionen in der Negativ-Regulation der Signalübertragung verschiedener Zelloberflächenrezeptoren. Zwei CBL-Deletionsmutanten, die in vitro Fibroblasten transformieren, wurden aus murinen Retroviren isoliert, die Vorläufer-B-Zelllymphome induzieren. In dieser Arbeit konnte gezeigt werden, dass CBL nach FL-Stimulierung von FLT3-WT-exprimierenden Ba/F3-Zellen phosphoryliert wird und damit in die FLT3-nachgeordnete Signaltransduktion involviert ist. Die Koexpression der CBL-Deletionsmutanten CBL-70Z oder v-CBL mit FLT3 führt zur Transformation von Ba/F3-Zellen. Das transformierende Potential wird durch den FLT3-Rezeptor vermittelt, da die selektiven FLT3-PTK-Inhibitoren SU5614 und PKC412 die Proliferation der FLT3-WT/CBL-mutanten-Zellen vollständig aufheben. Die Aktivierung des PI3K/mTOR/AKT-Signalweges, jedoch nicht der SRC-Kinasen und MAPK, trägt wesentlich zum hyperproliferierenden Phänotyp der FLT3-WT/CBL-mutanten Zellen nach Ligandenstimulierung bei. Die Koexpression von CBL-70Z oder v-CBL mit FLT3 führt zur konstitutiven Aktivierung der FLT3-Rezeptoren sowie STAT5 und AKT. Nach FL-Stimulierung konnten wir eine Hyperaktivierung von STAT5 und AKT in FLT3-WT/CBL-70Z und FLT3-WT/v-CBL-Zellen beobachten. An der Interaktion von CBL und FLT3 sind die TKB-Domäne des CBL-Proteins und die JM-Tyrosine Y589 und Y599 des FLT3-Rezeptors beteiligt. Die Internalisierung der FLT3-Rezeptoren wird durch die Koexpression von CBL-70Z nicht verändert. Allerdings ist CBL an der Ubiquitinierung und Degradierung von Rezeptoren beteiligt und wir konnten zeigen, dass CBL-WT die Dephosphorylierung und Degradierung des FLT3-Rezeptors fördert. Es wurde vorgeschlagen, dass die CBL-Deletionsmutanten in dominant-negativer Weise agieren und die negativ-regulatorische Funktion von CBL-WT blockieren. Wir haben eine CBL-Deletionsmutante in den AML Zelllinie MOLM-13 und MOLM-14 identifiziert. Dieser CBL-Mutante fehlt Exon 8, das für Teile der Linker- und RING-Finger-Domäne kodiert, und erinnert an CBL-70Z. Die Entdeckung einer möglicherweise transformierenden CBL-Mutante in AML-Zellen unterstützt die Hypothese, dass CBL zum malignen Phänotyp der AML beiträgt. Zusammenfassend haben wir gezeigt, dass die strukturelle oder funktionelle Inaktivierung negativ-regulatorischer Mechanismen das transformierende Potential von FLT3 aktivieren kann: 1. Der Verlust der Autoinhibition durch Punktmutationen, die die geordnete Konformation der autoinhibitorischen JM-Domäne stören. 2. Die funktionelle Inaktivierung eines negativ-regulatorischen Proteins durch ´loss-of-function´-Mutationen. Diese Daten unterstreichen die zentrale Rolle von FLT3 in der Leukämogenese und als ein Zielprotein für therapeutische Ansätze

    Adaptation Aftereffects in the Perception of Crabs and Lobsters as Examples of Complex Natural Objects

    Get PDF
    To recognize a familiar object, incoming perceptual information is matched against object representations in memory. Mounting evidence suggests that these representations are not stable, but adapt flexibly to recently encountered perceptual information. This is evident in the form of aftereffects, where prolonged exposure to one object (adaptor) influences perception of the next (test stimulus). So far, adaptation aftereffects have been mainly shown for human faces and simple geometric shapes, and it has been concluded that face aftereffects partially derive from shape adaptation. However, it is largely unknown whether adaptation aftereffects generalize to other categories of complex, naturalistic biological objects, and if so, whether these effects can be explained by shape adaptation. To answer these questions, we conducted three experiments in which images of crabs and lobsters were presented in two versions: as complex, naturalistic images, or reduced to their simplified geometric shapes. In Experiment 1, we found robust adaptation aftereffects for the complex versions of the images, indicating that adaptation aftereffects generalize to animate objects other than faces. Experiment 2 showed adaptation aftereffects for the simplified stimuli, replicating previous findings on geometric shapes. Experiment 3 demonstrated that adaptation to the simplified animal shapes results in aftereffects on the complex naturalistic stimuli. Comparisons between experiments revealed that aftereffects were largest in the first experiment, in which complex stimuli served as adaptor and test stimuli. Together, these experiments show that the magnitude of adaptation aftereffects depends on the complexity of the adaptor, but not on that of the test stimuli, and that shape adaptation plays a role in – but cannot entirely account for – the object aftereffects.Peer Reviewe

    Biochemical and structural studies reveal differences and commonalities among cap-snatching endonucleases from segmented negative-strand RNA viruses

    No full text
    Viruses rely on many host cell processes, including the cellular transcription machinery. Segmented negative-strand RNA viruses (sNSV) in particular cannot synthesize the 5'-cap structure for their mRNA, but cleave off cellular caps and use the resulting oligonucleotides as primers for their transcription. This cap-snatching mechanism, involving a viral cap-binding site and RNA endonuclease, is both virus specific and essential for viral proliferation and therefore represents an attractive drug target. Here, we present biochemical and structural results on the putative cap-snatching endonuclease of Crimean-Congo hemorrhagic fever virus (CCHFV), a highly pathogenic bunyavirus belonging to the Nairoviridae family, and of two additional nairoviruses, Erve virus (EREV) and Nairobi sheep disease virus (NSDV). Our findings are presented in the context of other cap-snatching endonucleases, such as the enzymatically active endonuclease from Rift Valley fever virus (RVFV), from Arenaviridae and Bunyavirales, belonging to the His- and His+ endonucleases, respectively, according to the absence or presence of a metal ion coordinating histidine in the active site. Mutational and metal-binding experiments revealed the presence of only acidic metal-coordinating residues in the active site of the CCHFV domain and a unique active-site conformation, that was intermediate between those of His+ and His- endonucleases. On the basis of small-angle X-ray scattering (SAXS) and homology modeling results, we propose a protein topology for the CCHFV domain that, despite its larger size, has a structure overall similar to those of related endonucleases. These results suggest structural and functional conservation of the capsnatching mechanism among sNSVs

    Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein

    No full text
    The Bunyavirales order contains several emerging viruses with high epidemic potential, including Severe fever with thrombocytopenia syndrome virus (SFTSV). The lack of medical countermeasures, such as vaccines and antivirals, is a limiting factor for the containment of any virus outbreak. To develop such antivirals a profound understanding of the viral replication process is essential. The L protein of bunyaviruses is a multi-functional and multi-domain protein performing both virus transcription and genome replication and, therefore, is an ideal drug target. We established expression and purification procedures for the full-length L protein of SFTSV. By combining single-particle electron cryo-microscopy and X-ray crystallography, we obtained 3D models covering ∼70% of the SFTSV L protein in the apo-conformation including the polymerase core region, the endonuclease and the cap-binding domain. We compared this first L structure of the Phenuiviridae family to the structures of La Crosse peribunyavirus L protein and influenza orthomyxovirus polymerase. Together with a comprehensive biochemical characterization of the distinct functions of SFTSV L protein, this work provides a solid framework for future structural and functional studies of L protein–RNA interactions and the development of antiviral strategies against this group of emerging human pathogens

    Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein

    Get PDF
    <div><p>Andes virus (ANDV) is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in <i>Escherichia coli</i>, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1–200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure–function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening.</p></div

    Structure–function relationships in the ANDV endonuclease.

    No full text
    <p>Based on the crystal structure of L<sub>1–200</sub> K127A, a role for the 15 amino acid residues, that have been implicated in the activity of the endonuclease in mammalian cells [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005635#ppat.1005635.ref037" target="_blank">37</a>], was inferred. Side chains are shown as sticks and important hydrogen bonds are highlighted with dashed lines. Lys127 is mutated to alanine and therefore not completely represented in the structure. The manganese ion is shown as red sphere.</p
    corecore