36 research outputs found

    Herpes Simplex Virus Type 1 at the Central Nervous System

    Get PDF
    Herpes simplex virus type 1 (HSV‐1) is a ubiquitous and neurotropic pathogen and is the most common cause of acute sporadic encephalitis in humans. This virus is characterized by establishing a persistent latent infection in neurons of its hosts for life. The pathogenic mechanisms of HSV‐1 at the central nervous system (CNS) are not completely elucidated. Besides, evidences suggest that HSV‐1 establish latency in the CNS in humans and that this condition would not be harmless, especially in people whose immune system is declined. This trait has been strongly suggested as a risk factor for the development of neurodegenerative pathologies such as Alzheimer\u27s disease. Currently, it is unclear whether a neuron, which undergoes viral reactivation and produces infectious particles, survives and resumes latency, loses functionality, or is killed. These data highlight the need for more studies at cellular and molecular levels to understand the strategies used by the virus and the host cells during both productive and latent infection. The present chapter discusses the current investigations about HSV‐1 infection at the CNS and the potential risk of neuronal dysfunction and chronic neurological diseases

    Interleukin-3 prevents neuronal death induced by amyloid peptide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-3 (IL-3) is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known.</p> <p>Results</p> <p>In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ)-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2.</p> <p>Conclusion</p> <p>Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.</p

    Isolation of Helicobacter pylori in gastric mucosa and susceptibility to five antimicrobial drugs in Southern Chile

    No full text
    Helicobacter pylori colonizes more than 50% of the world population thus, it is considered an important cause of gastric cancer. The aim of this study was to determine the isolation frequency of H. pylori in Southern Chile from patients with symptomatology compatible with gastritis or gastric ulcer and to correlate these findings with demographic parameters of infected patients and the susceptibility profiles of the isolated strains to the antimicrobial drugs used in the eradication treatments. A total of 240 patients were enrolled in the study. Each gastric biopsy was homogenized and seeded onto blood agar plates containing a selective antibiotics mixture (DENT supplement). Plates were incubated at 37° C in a microaerophilic environment for five days. The susceptibility profiles to amoxicillin, ciprofloxacin, clarithromycin, tetracycline and metronidazole were determined using the E-test method. H. pylori was isolated from 99 patients (41.3%) with slightly higher frequency in female (42% positive cultures) than male (40.2% positive cultures). With regard to age and educational level, the highest isolation frequencies were obtained in patients between 21-30 (55%) and 41-50 (52.6%) years old, and patients with secondary (43.9%) and university (46.2%) educational levels. Nineteen (21.6%) strains showed resistance to at least one antimicrobial drug. Tetracycline was the most active antimicrobial in vitro, whereas metronidazole was the less active. One strain (5.3%) showed resistance to amoxicillin, clarithomycin and metronidazole, simultaneously

    The protein kinase cdk5: Structural aspects, roles in neurogenesis and involvement in Alzheimer's pathology

    No full text
    A set of different protein kinases have been involved in tau phosphorylations, including glycogen synthase kinase 3b (GSK3b), MARK kinase, MAP kinase, the cyclin-dependent kinase 5 (Cdk5) system and others. The latter system include the catalytic component Cdk5 and the regulatory proteins p35, p25 and p39. Cdk5 and its neuron-specific activator p35 are essential molecules for neuronal migration and for the laminar configuration of the cerebral cortex. Recent evidence that the Cdk5/p35 complex concentrates at the leading edge of axonal growth cones, together with the involvement of this system in the phosphorylation of neuronal microtubule-asociated proteins (MAPs), provide further support to the role of this protein kinase in regulating axonal extension in developing brain neurons. Although the aminoacid sequence of p35 has little similarity with those of normal cyclins, studies have shown that its activation domain may adopt a conformation of the cyclin-folded structure. The compute

    Subtyping of Chilean Methicillin-Resistant Staphylococcus aureus strains carrying the staphylococcal cassette chromosome mec type I

    No full text
    The cassette chromosome mec (SCCmec) present in methicillin-resistant Staphylococcus aureus (MRSA) has two essential components, the ccr gene complex and the mec gene complex. Additionally, SCCmec has non-essential components called J regions which are used for MRSA subtyping. This study was performed to determine subtypes MRSA strains carrying SCCmec type I based on polymorphism of regions located downstream of the mecA gene. A total of 98 MRSA strains carrying SCCmec type I isolated from patients hospitalized at the County Hospital of Valdivia (Chile) between May 2007 and May 2008, were analyzed by multiplex PCR designed to amplify the mecA gene and 7 DNA hypervariable regions located around the mecA gene. MRSA strains were classified into seventeen genotypes accordingly to amplification patterns of DNA hypervariable regions. Five genotypes showed amplification patterns previously described. The remaining twelve genotypes showed new amplification patterns. Genotypes 18 and Genotype 19 were the most frequently detected. Regions HVR, Ins117 and pI258 stand out as being present in more than 60% of tested isolates. The acquisition of hypervariable regions by MRSA is a continuous horizontal transfer process through which the SCCmec have been preserved intact, or even may give rise to new types and subtypes of SCCmec. Therefore it is possible to infer that most MRSA strains isolated at the County Hospital of Valdivia (Chile) were originated from two local clones which correspond to Genotype 18 and Genotype 19

    Serological Evidence of Hantavirus Infection in Apparently Healthy People from Rural and Slum Communities in Southern Chile

    No full text
    Hantavirus disease in America has been recognizable because of its rapid progression in clinical cases, occurrence in previously healthy young adults, and high case fatality rate. Hantavirus disease has been proposed now to define the diversity of clinical manifestations. Since 1995, a total of 902 cases of hantavirus pulmonary syndrome have been reported in Chile, caused by Andes virus (ANDV), with overall fatality of 32%. This report describes the sero-epidemiology of hantavirus in apparently healthy people in rural and urban slum communities from southern Chile. Ten of 934 samples yielded a positive result resulting in a seroprevalence of 1.07% (95% confidence intervals: 0.05%–2.0%). A higher proportion of positive samples was found among individuals from rural villages (1.3%) and slums (1.5%) compared with farms (0.5%). Seropositivity was associated with age (p = 0.011), low education level (p = 0.006) and occupations linked to the household (homemaker, retired, or student) (p = 0.016). No evidence of infection was found in 38 sigmodontinae rodents trapped in the peri-domestic environment. Our findings highlight that exposure risk was associated with less documented risk factors, such as women in slum and rural villages, and the occurrence of infection that may have presented as flu-like illness that did not require medical attention or was misdiagnosed

    Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase

    No full text
    Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system
    corecore