16 research outputs found

    Contribution of Maize Polyamine and Amino Acid Metabolism Toward Resistance Against Aspergillus flavus Infection and Aflatoxin Production

    Get PDF
    Polyamines (PAs) are ubiquitous polycations found in plants and other organisms that are essential for growth, development, and resistance against abiotic and biotic stresses. The role of PAs in plant disease resistance depends on the relative abundance of higher PAs [spermidine (Spd), spermine (Spm)] vs. the diamine putrescine (Put) and PA catabolism. With respect to the pathogen, PAs are required to achieve successful pathogenesis of the host. Maize is an important food and feed crop, which is highly susceptible to Aspergillus flavus infection. Upon infection, the fungus produces carcinogenic aflatoxins and numerous other toxic secondary metabolites that adversely affect human health and crop value worldwide. To evaluate the role of PAs in aflatoxin resistance in maize, in vitro kernel infection assays were performed using maize lines that are susceptible (SC212) or resistant (TZAR102, MI82) to aflatoxin production. Results indicated significant induction of both PA biosynthetic and catabolic genes upon A. flavus infection. As compared to the susceptible line, the resistant maize lines showed higher basal expression of PA metabolism genes in mock-inoculated kernels that increased upon fungal infection. In general, increased biosynthesis and conversion of Put to Spd and Spm along with their increased catabolism was evident in the resistant lines vs. the susceptible line SC212. There were higher concentrations of amino acids such as glutamate (Glu), glutamine (Gln) and Îł-aminobutyric acid (GABA) in SC212. The resistant lines were significantly lower in fungal load and aflatoxin production as compared to the susceptible line. The data presented here demonstrate an important role of PA metabolism in the resistance of maize to A. flavus colonization and aflatoxin contamination. These results provide future direction for the manipulation of PA metabolism in susceptible maize genotypes to improve aflatoxin resistance and overall stress tolerance

    The Aspergillus Flavus Homeobox Gene, HBX1, Is Required for Development and Aflatoxin Production

    Get PDF
    Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx) genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. Microscopic examination showed that the ∆hbx1 mutants did not produce conidiophores. The inability of ∆hbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC, aflD, aflM and the cluster-specific regulatory gene, aflR. Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins

    Cumulative Effects of Non-Aflatoxigenic <i>Aspergillus flavus</i> Volatile Organic Compounds to Abate Toxin Production by Mycotoxigenic Aspergilli

    No full text
    Previously, authors reported that individual volatile organic compounds (VOCs) emitted by non-aflatoxigenic Aspergillus flavus could act as a mechanism of biocontrol to significantly reduce aflatoxins and cyclopiazonic acid (CPA) produced by toxigenic strains. In this study, various combinations and volumes of three mycotoxin-reductive VOCs (2,3-dihydrofuran, 3-octanone and decane) were assessed for their cumulative impacts on four Aspergillus strains (LA1–LA4), which were then analyzed for changes in growth, as well as the production of mycotoxins, including aflatoxins, CPA and multiple indole diterpenes. Fungal growth remained minimally inhibited when exposed to various combinations of VOCs. No single combination was able to consistently, or completely, inhibit aflatoxin or CPA across all toxigenic strains tested. However, the combination of 2,3-dihydrofuran and 3-octanone offered the greatest overall reductions in aflatoxin and CPA production. Despite no elimination of their production, findings showed that combining VOCs produced solely by non-aflatoxigenic A. flavus still inhibited several agriculturally important mycotoxins, including B and G aflatoxins and CPA. Therefore, other VOC combinations are worth testing as post-harvest biocontrol treatments to ensure the prolonged effectiveness of pre-harvest biocontrol efforts

    Flavonoids Modulate <i>Aspergillus flavus</i> Proliferation and Aflatoxin Production

    No full text
    Aflatoxins are carcinogenic mycotoxins produced by Aspergillus flavus. They contaminate major food crops, particularly corn, and pose a worldwide health concern. Flavonoid production has been correlated to resistance to aflatoxin accumulation in corn. The effects of flavonoids on fungal proliferation and aflatoxin production are not well understood. In this study, we performed bioassays, fluorescence and scanning electron microscopy, and total antioxidant analysis to determine the effects of three flavonoids (apigenin, luteolin, and quercetin) on proliferation and aflatoxin production in A. flavus NRRL 3357. Results showed that concentrations of apigenin and luteolin modulated fungal proliferation and aflatoxin production in a dose-dependent manner, leading to inhibition or promotion of proliferation and toxin production. Microscopy studies of fungi exposed to flavonoids showed mycelial cell wall disruption, abnormal cell wall invaginations, and tears. Fluorescent enhancement of apigenin and luteolin using Naturstoff reagent A showed that these chemicals localized in sphere-like structures on the mycelia surface. Fungi exposed to low concentrations of apigenin, luteolin, and quercetin lowered the total antioxidant capacity in the environment compared to controls. Our results indicate that flavonoids disrupt cell wall integrity and may localize in vesicle-like structures. We hypothesize that flavonoids could act as potential signaling molecules at low concentrations and change the oxidative state of the microenvironment, either or both of which may lead to reduction of fungal proliferation and aflatoxin production

    The Aspergillus flavus Spermidine Synthase (spds) Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels

    No full text
    Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs) known as aflatoxins. Polyamines (PAs) are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis. Biosynthesis of spermidine (Spd) is critical for cell growth as it is required for hypusination-mediated activation of eukaryotic translation initiation factor 5A (eIF5A), and other biochemical functions. The tri-amine Spd is synthesized from the diamine putrescine (Put) by the enzyme spermidine synthase (Spds). Inactivation of spds resulted in a total loss of growth and sporulation in vitro which could be partially restored by addition of exogenous Spd. Complementation of the Δspds mutant with a wild type (WT) A. flavus spds gene restored the WT phenotype. In WT A. flavus, exogenous supply of Spd (in vitro) significantly increased the production of sclerotia and SMs. Infection of maize kernels with the Δspds mutant resulted in a significant reduction in fungal growth, sporulation, and aflatoxin production compared to controls. Quantitative PCR of Δspds mutant infected seeds showed down-regulation of aflatoxin biosynthetic genes in the mutant compared to WT A. flavus infected seeds. Expression analyses of PA metabolism/transport genes during A. flavus-maize interaction showed significant increase in the expression of arginine decarboxylase (Adc) and S-adenosylmethionine decarboxylase (Samdc) genes in the maize host and PA uptake transporters in the fungus. The results presented here demonstrate that Spd biosynthesis is critical for normal development and pathogenesis of A. flavus and pre-treatment of a Δspds mutant with Spd or Spd uptake from the host plant, are insufficient to restore WT levels of pathogenesis and aflatoxin production during seed infection. The data presented here suggest that future studies targeting spermidine biosynthesis in A. flavus, using RNA interference-based host-induced gene silencing approaches, may be an effective strategy to reduce aflatoxin contamination in maize and possibly in other susceptible crops

    Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus

    No full text
    Aspergillus flavus can colonize important food staples and produce aflatoxins, a group of toxic and carcinogenic secondary metabolites. Previous in silico analysis of the A. flavus genome revealed 56 gene clusters predicted to be involved in the biosynthesis of secondary metabolites. A. flavus secondary metabolites produced during infection of maize seed are of particular interest, especially with respect to their roles in the biology of the fungus. A predicted nonribosomal peptide synthetase-like (NRPS-like) gene, designated asaC (AFLA_023020), present in the uncharacterized A. flavus secondary metabolite gene cluster 11 was previously shown to be expressed during the earliest stages of maize kernel infection. Cluster 11 is composed of six additional genes encoding a number of putative decorating enzymes as well as a transporter and transcription factor. We generated knock-out mutants of the seven predicted cluster 11 genes. LC-MS analysis of extracts from knockout mutants of these genes showed that they were responsible for the synthesis of the previously characterized antimicrobial mycotoxin aspergillic acid. Extracts of the asaC mutant showed no production of aspergillic acid or its precursors. Knockout of the cluster 11 P450 oxidoreductase afforded a pyrazinone metabolite, the aspergillic acid precursor deoxyaspergillic acid. The formation of hydroxyaspergillic acid was abolished in a desaturase/hydroxylase mutant. The hydroxamic acid functional group in aspergillic acid allows the molecule to bind to iron resulting in the production of a red pigment in A. flavus identified previously as ferriaspergillin. A reduction of aflatoxin 131 and cyclopiazonic acid that correlated with reduced fungal growth was observed in maize kernel infection assays when aspergillic acid biosynthesis in A. flavus is halted
    corecore