132 research outputs found

    Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine

    Get PDF
    Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned

    Lipidic Formulations Inspired by COVID Vaccines as Smart Coatings to Enhance Nanoparticle-Based Cancer Therapy

    Get PDF
    Recent advances in nanomedicine have led to the introduction and subsequent establishment of nanoparticles in cancer treatment and diagnosis. Nonetheless, their application is still hindered by a series of challenges related to their biocompatibility and biodistribution. In this paper, we take inspiration from the recently produced and widely spread COVID vaccines, based on the combinational use of ionizable solid lipid nanoparticles, cholesterol, PEGylated lipids, and neutral lipids able to incorporate mRNA fragments. Here, we focus on the implementation of a lipidic formulation meant to be used as a smart coating of solid-state nanoparticles. The composition of this formulation is finely tuned to ensure efficient and stable shielding of the cargo. The resulting shell is a highly customized tool that enables the possibility of further functionalizations with targeting agents, peptides, antibodies, and fluorescent moieties for future in vitro and in vivo tests and validations. Finally, as a proof of concept, zinc oxide nanoparticles doped with iron and successively coated with this lipidic formulation are tested in a pancreatic cancer cell line, BxPC-3. The results show an astonishing increase in cell viability with respect to the same uncoated nanoparticles. The preliminary results presented here pave the way towards many different therapeutic approaches based on the massive presence of highly biostable and well-tolerated nanoparticles in tumor tissues, such as sonodynamic therapy, photodynamic therapy, hyperthermia, and diagnosis by means of magnetic resonance imaging

    Route Stability in MANETs under the Random Direction Mobility Model

    Get PDF
    Abstract: A fundamental issue arising in mobile ad hoc networks (MANETs) is the selection of the optimal path between any two nodes. A method that has been advocated to improve routing efficiency is to select the most stable path so as to reduce the latency and the overhead due to route reconstruction. In this work, we study both the availability and the duration probability of a routing path that is subject to link failures caused by node mobility. In particular, we focus on the case where the network nodes move according to the Random Direction model, and we derive both exact and approximate (but simple) expressions of these probabilities. Through our results, we study the problem of selecting an optimal route in terms of path availability. Finally, we propose an approach to improve the efficiency of reactive routing protocols

    Biodegradable and drug-eluting inorganic composites based on mesoporous zinc oxide for urinary stent applications

    Get PDF
    Conventional technologies for ureteral stent fabrication suffer from major inconveniences such as the development of encrustations and bacteria biofilm formation. These drawbacks typically lead to the failure of the device, significant patient discomfort and an additional surgery to remove and replace the stent in the worst cases. This work focuses on the preparation of a new nanocomposite material able to show drug elution properties, biodegradation and eventually potential antibacterial activity. Poly(2-hydroxyethyl methacrylate) or the crosslinked poly(2-hydroxyethyl methacrylate)-co-poly(acrylic acid) hydrogels were prepared by the radical polymerization method and combined with a biodegradable and antibacterial filling agent, i.e., flower-like Zinc Oxide (ZnO) micropowders obtained via the hydrothermal route. The physico-chemical analyses revealed the correct incorporation of ZnO within the hydrogel matrix and its highly mesoporous structure and surface area, ideal for drug incorporation. Two different anti-inflammatory drugs (Ibuprofen and Diclofenac) were loaded within each composite and the release profile was monitored up to two weeks in artificial urine (AU) and even at different pH values in AU to simulate pathological conditions. The addition of mesoporous ZnO micropowders to the hydrogel did not negatively affect the drug loading properties of the hydrogel and it was successfully allowed to mitigate undesirable burst-release effects. Furthermore, the sustained release of the drugs over time was observed at neutral pH, with kinetic constants (k) as low as 0.05 h-1. By exploiting the pH-tunable swelling properties of the hydrogel, an even more sustained release was achieved in acidic and alkaline conditions especially at short release times, with a further reduction of burst effects (k ≈ 0.01-0.02 h-1). The nanocomposite system herein proposed represents a new material formulation for preparing innovative drug eluting stents with intrinsic antibacterial properties

    Ultrasound Triggered ZnO-Based Devices for Tunable and Multifaceted Biomedical Applications

    Get PDF
    Smart materials able to respond to an external stimulus or an environmental condition represent milestone developments in modern medicine. Among them, zinc oxide (ZnO) is a highly intriguing inorganic material with versatile morphologies/shapes and multifunctional properties like piezoelectricity, enhanced reactive oxygen species (ROS) generation, and antimicrobial ones. Here, the fabrication of smart ZnO-based films is shown that can remotely be activated by ultrasound (US). US exposure induces electrical potentials on the fabricated devices that can be exploited to stimulate electrically responsive cells or promote ROS generation for cancer treatment. ZnO microparticles with surface nanostructuring are thus synthesized and processed in the form of a paste to deposit thin films on flexible polymeric supports. ZnO paste formulation and the fabrication procedure of the final device are optimized in terms of uniformity, hydrophilicity, and purity. Graphene oxide and poly(2-hydroxyethyl methacrylate) are also layered onto the ZnO films in order to provide the devices with additional functionalities. ROS generation and electro-mechanical performances upon US stimulation are evaluated for all of the developed devices. Finally, biocompatibility studies are conducted with osteoblast-like cell cultures for possible applications in the contexts of bone tissue engineering/therapy

    Discursive strategies of genre hybridisation in Gianrico Carofiglio's essays and novels: towards a consensual language of truth and justice

    Get PDF
    Justice is a recurrent theme in the writings of Gianrico Carofiglio, in particular the novels and the essays. In these works, great attention is paid to how justice is delivered through the Italian legal processes, how it is conceived by those who are entrusted with its administration, and how it is perceived by citizens. Through the analysis of a sample corpus, comprising two essays and two of the novels of the Guido Guerrieri cycle, this contribution examines a range of strategies used by the author to configure his vision of justice. A preliminary overview appears to suggest a pronounced difference between novels and essays with regard to the author’s own stance towards justice. Whilst the novels echo the nationally shared distrust for what is considered to be a system that is dysfunctional, and deserves to be critiqued and contested, the essays encourage readers to embrace a consensual, positive view of the principles of justice. The main contention in this contribution is that the apparently resigned portrayal of a flawed justice system found in the novels contains the same desire and points to the same social and ethical perspective as the essays. Through a reflection on the topoi that emerge in the texts, and through the analysis of their key themes and the observation of some of their linguistic features (including lexical frequency and distribution), this contribution brings to the fore the ideological, as well as stylistic coherence that exists between the two sets of texts

    Production of the polyhydroxyalkanoate PHBV from ricotta cheese exhausted whey by haloferax mediterranei fermentation

    Get PDF
    In the last decade, the dairy industry underwent a rapid expansion due to the increasing demand of milk-based products, resulting in high quantity of wastewater, i.e., whey and ricotta cheese exhausted whey (RCEW). Although containing high content of nutritional compounds, dairy by-products are still disposed as waste rather being reintroduced in a new production chain, hence leading to environmental and economic issues. This study proposes a new biotechnological approach based on the combination of membrane filtration and fermentation to produce poly-hydroxyalkanoates (PHA), biodegradable bioplastics candidate as an alternative to petroleum-derived plastics. The protocol, exploiting the metabolic capability Haloferax mediterranei to synthesize PHA from RCEW carbon sources, was set up under laboratory and pilot scale conditions. A multi-step fractionation was used to recover a RCEW fraction containing 12.6% (w/v) of lactose, then subjected to an enzymatic treatment aimed at releasing glucose and galactose. Fermentation conditions (culture medium for the microorganism propagation, inoculum size, time, and temperature of incubation) were selected according to the maximization of polymer synthesis, under in-flasks experiments. The PHA production was then tested using a bioreactor system, under stable and monitored pH, temperature, and stirring conditions. The amount of the polymer recovered corresponded to 1.18 g/L. The differential scanning calorimetry (DSC) analysis revealed the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the polymer synthesized, with a relatively high presence of hydroxyvalerate (HV). Identity and purity of the polymer were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy analyses. By combining the fractionation of RCEW, one of the most abundant by-products from the agri-food industry, and the use of the halophile Hfx mediterranei, the production of PHBV with high purity and low crystallinity has successfully been optimized. The process, tested up to pilot scale conditions, may be further implemented (e.g., through fed-batch systems) and used for large-scale production of bioplastics, reducing the economical and environmental issues related the RCEW disposal
    • …
    corecore