16 research outputs found

    Connected macroalgal‐sediment systems: blue carbon and food webs in the deep coastal ocean

    Get PDF
    Macroalgae drive the largest CO2 flux fixed globally by marine macrophytes. Most of the resulting biomass is exported through the coastal ocean as detritus and yet almost no field measurements have verified its potential net sequestration in marine sediments. This gap limits the scope for the inclusion of macroalgae within blue carbon schemes that support ocean carbon sequestration globally, and the understanding of the role their carbon plays within distal food webs. Here, we pursued three lines of evidence (eDNA sequencing, Bayesian Stable Isotope Mixing Modeling, and benthic‐pelagic process measurements) to generate needed, novel data addressing this gap. To this end, a 13‐month study was undertaken at a deep coastal sedimentary site in the English Channel, and the surrounding shoreline of Plymouth, UK. The eDNA sequencing indicated that detritus from most macroalgae in surrounding shores occurs within deep, coastal sediments, with detritus supply reflecting the seasonal ecology of individual species. Bayesian stable isotope mixing modeling [C and N] highlighted its vital role in supporting the deep coastal benthic food web (22–36% of diets), especially when other resources are seasonally low. The magnitude of detritus uptake within the food web and sediments varies seasonally, with an average net sedimentary organic macroalgal carbon sequestration of 8.75 g C·m−2·yr−1. The average net sequestration of particulate organic carbon in sediments is 58.74 g C·m−2·yr−1, the two rates corresponding to 4–5% and 26–37% of those associated with mangroves, salt marshes, and seagrass beds, systems more readily identified as blue carbon habitats. These novel data provide important first estimates that help to contextualize the importance of macroalgal‐sedimentary connectivity for deep coastal food webs, and measured fluxes help constrain its role within global blue carbon that can support policy development. At a time when climate change mitigation is at the foreground of environmental policy development, embracing the full potential of the ocean in supporting climate regulation via CO2 sequestration is a necessity

    An approach for the identification of exemplar sites for scaling up targeted field observations of benthic biogeochemistry in heterogeneous environments

    Get PDF
    Continental shelf sediments are globally important for biogeochemical activity. Quantification of shelf-scale stocks and fluxes of carbon and nutrients requires the extrapolation of observations made at limited points in space and time. The procedure for selecting exemplar sites to form the basis of this up-scaling is discussed in relation to a UK-funded research programme investigating biogeochemistry in shelf seas. A three-step selection process is proposed in which (1) a target area representative of UK shelf sediment heterogeneity is selected, (2) the target area is assessed for spatial heterogeneity in sediment and habitat type, bed and water column structure and hydrodynamic forcing, and (3) study sites are selected within this target area encompassing the range of spatial heterogeneity required to address key scientific questions regarding shelf scale biogeochemistry, and minimise confounding variables. This led to the selection of four sites within the Celtic Sea that are significantly different in terms of their sediment, bed structure, and macrofaunal, meiofaunal and microbial community structures and diversity, but have minimal variations in water depth, tidal and wave magnitudes and directions, temperature and salinity. They form the basis of a research cruise programme of observation, sampling and experimentation encompassing the spring bloom cycle. Typical variation in key biogeochemical, sediment, biological and hydrodynamic parameters over a pre to post bloom period are presented, with a discussion of anthropogenic influences in the region. This methodology ensures the best likelihood of site-specific work being useful for up-scaling activities, increasing our understanding of benthic biogeochemistry at the UK-shelf scale
    corecore